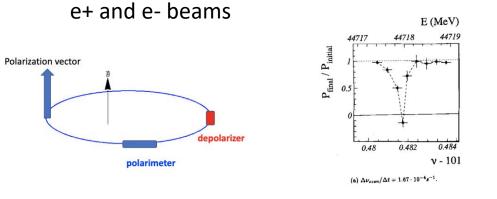
Longitudinally polarized colliding beams at CEPC

Tao Chen

On behalf of CEPC Beam Polarization Working Group 2022. 09. 22

Beam polarization working group

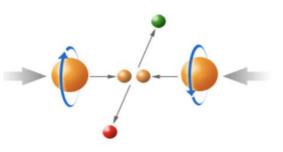

- Physics design:
 - <mark>Tao Chen</mark>, Zhe Duan, <mark>Hongjin Fu</mark>, Jie Gao, Sergei Nikitin (BINP), Dou Wang, Jiuqing Wang, Yiwei Wang, <mark>Wenhao Xia(graduated)</mark>
- Polarized electron source & linac:
 - Xiaoping Li, Cai Meng, Jingru Zhang
- Polarimeter:
 - Shanhong Chen, Yongsheng Huang, Guangyi Tang

- Discussions with D. P. Barber (DESY) on polarization theories and simulations are illuminating.
- Helpful discussions with E. Forest (KEK) & D. Sagan (Cornell) on usage of Bmad/PTC are acknowledged.

Motivation of CEPC polarized beam program

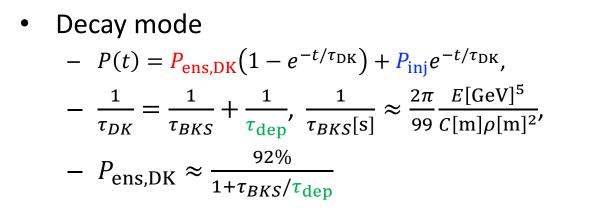
Vertically polarized beams in the arc

- Beam energy calibration via the resonant depolarization technique
- Essential for precision measurements of Z and
 W properties
- At least 5% ~ 10% vertical polarization, for both



L. Arnaudon, et al., Z. Phys. C 66, 45-62 (1995).

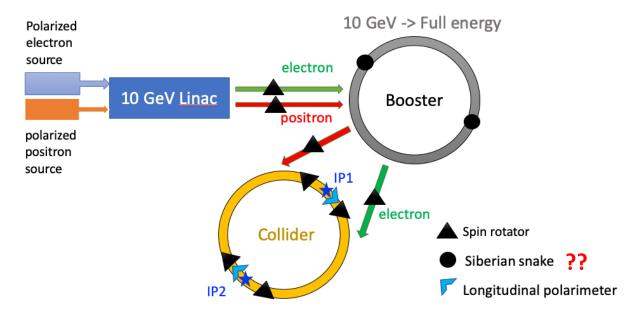
Longitudinally polarized beams at IPs


- Beneficial to colliding beam physics
 programs at Z, W and Higgs
- Figure of merit: Luminosity * f(Pe+, Pe-)
- ~50% or more longitudinal polarization is

desired, for one beam, or both beams

- Supported by National Key R&D Program 2018-2023 to design longitudinally polarized colliding beams at Z-pole.
- The study in this presentation is based on CEPC CDR lattice & parameters.
- Will be included as a Chapter in the Appendix in the CEPC TDR.

Self-polarization vs injection of polarized beams for the collider ring


Top-up injection
•
$$P_{avg} \approx \frac{P_{ens,DK}}{1+\tau_{DK}/\tau_b} + \frac{P_{inj}}{1+\tau_b/\tau_{DK}}$$

• If $\tau_b \gg \tau_{DK}$, then $P_{avg} \approx P_{ens,DK}$
• If $\tau_{DK} \gg \tau_b$, then $P_{avg} \approx P_{inj}$

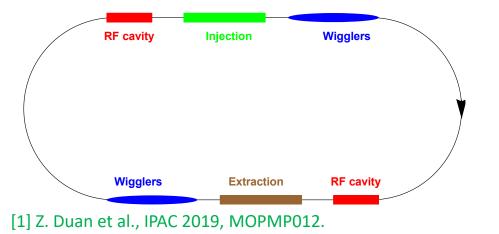
- In new e+e- circular colliders, a longer τ_b suggests a lower luminosity
- Injection of polarized beams is required to reach a high P_{avg} without sacrificing luminosity
 - Key: mitigate radiative depolarization (to achieve a longer τ_{dep}) to maintain $\tau_{DK} \gg \tau_b$
 - More challenging at higher beam energies at CEPC

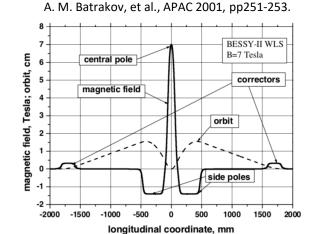
CEPC CDR parameters	45.6 GeV (Z, 2T)	80 GeV (W)	120 GeV (Higgs)
$ au_b$ (hour)	2.5	1.4	0.43
$ au_{BKS}$ (hour)	256	15.2	2.0
$P_{\text{ens,DK}}$ required to realize $P_{\text{avg}} \ge 50\%$, if $P_{\text{inj}} = 80\%$	0.6%	5%	11%

Longitudinal polarization @ CEPC

- In the injector: preparation and maintenance of highly polarized e- (e+) beam(s).
 - Polarized source: polarized e- gun (specs defined), polarized e+ source (preliminary study)
 - Booster: polarization maintenance (underway)
 - Transfer lines: ensure the matching of polarization directions (to be studied)
- In the collider ring:
 - spin rotators > longitudinal polarization[1] (done)
 - ensure $\tau_{DK} \gg \tau_b$, then $P_{avg} \approx P_{inj}$
 - Compton polarimeter[2] (under way)

[1] W. H. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2
[2] S. H. Chen et al., JINST 17, P08005, (2022)


Polarized e-/e+ source for > 50% polarization


• Polarized e- source is matured technology

Parameter	ILC(TDR)	CLIC(3TeV)	CEPC
Electrons/microbunch	2×10 ¹⁰	0.6×10 ¹⁰	>0.94×10 ¹⁰
Charge / microbunch	3.2nC	1nC	1.5nC
Number of microbunches	1312	312	1
Macropulse repetition rate	5	50	100
Average current from gun	21μΑ	15μΑ	0.15μΑ
Polarization	>80%	>80%	>80%

Parameters of CEPC polarized electron source			
Gun type	Photocathode DC Gun		
Cathode material	Super-lattice GaAs/GaAsP		
HV	150-200kV		
QE	0.5%		
Polarization	≥85%		
Electrons/bunch	2×10 ¹⁰		
Repetition rate	100Hz		
Drive laser	780nm (\pm 20nm), 10 μ J@1ns		

- A polarizing/damping ring for e+, using high-field asymmetric wigglers [1]
 - Detailed design study is under way
 - Low-emittance lattice design w/ very strong wigglers An asymmetric wiggler @BESSY-II as WLS,

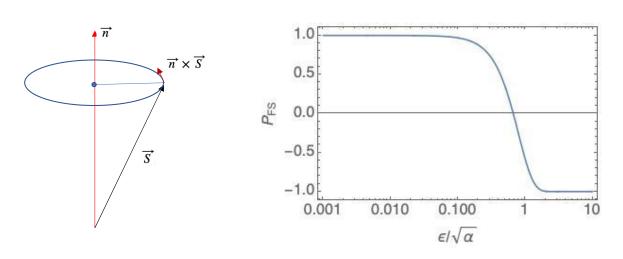
Parameter	Value
beam energy(GeV)	2.5
circumference(m)	240
wiggler total length(m)	22
$B_{+}/B_{-}(T)$	15/1.5
$U_0(\text{MeV})$	3.5
$\tau_{BKS}(s)$	20
rms energy spread	~ 0.003
natural emittance(nm)	~ 25
damping time(ms)	~ 1
momentum compaction factor	0.001
RF voltage(MV)	4.8
bunch length(mm)	12.6
bunch number	200
bunch spacing(ns)	4
beam current(mA)	< 600

bunch charge(nC)

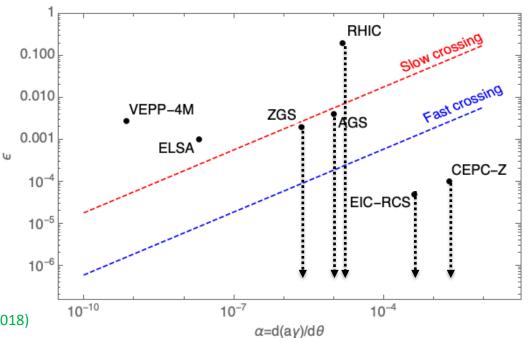
beam store time(s)

beam polarization before extraction

Tentative parameters


>20	
>58%	

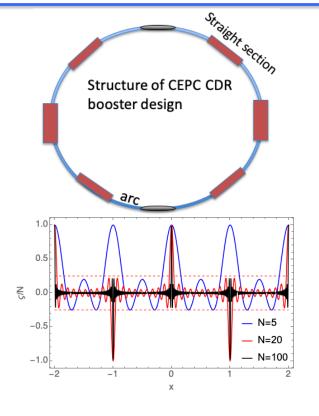
6


< 2.5

Polarization maintenance in synchrotron/booster

- $J_s = \vec{S} \cdot \vec{n}$ is an adiabatic invariant
- $v_0 \approx a\gamma_0$ and \vec{n}_0 changes during acceleration. When crossing a spin resonance, $|J_s|$ could vary due to non-adiabaticity, leading to depolarization described by Froissart-Stora formula[1]:
 - Two factors: spin resonance strength ε and acceleration rate $\alpha \sim 10^{-6} \frac{dE}{dt} [\text{GeV/s}]C[\text{km}]$
 - Polarization is maintained ($\Delta P < 1\%$) if
 - Fast crossing: $\frac{\epsilon}{\sqrt{\alpha}} \ll 0.06$
 - Slow crossing: $\frac{\epsilon}{\sqrt{\alpha}} \gg 1.82$, spin flip

[1] Froissart and Stora, NIM 7, 297 (1960) [2] A. K. Barladyan, et al., PRAB 22, 112804, (2019)
 [3] S. Nakamura, et al., NIM A 411, 93 (1998) [4] T. Khoe et al., Part. Accel. 6, 213 (1975)
 [5] Configuration Manual: Polarized Proton Collider at RHIC, 2006 [6] V. Ranjbar, et al., PRAB 21, 111003 (2018)



Spin resonance structure

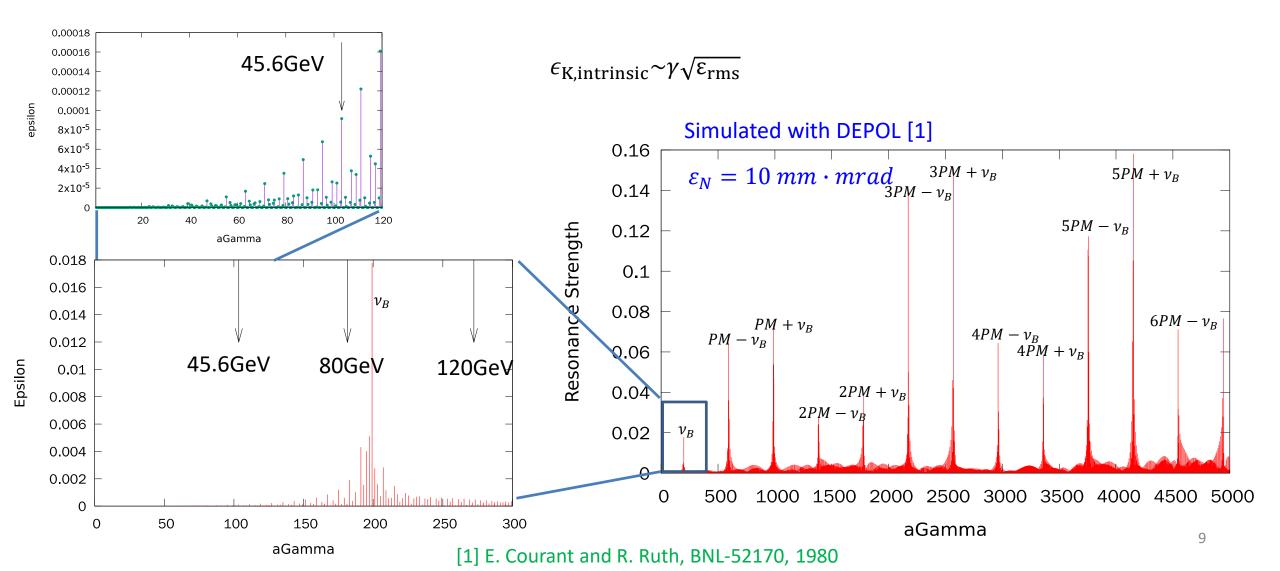
Parameter of CEPC CDR Booster	Value
P: number of periodicities	8
M: number of unit cells in each arc region (per period)	99
v_y : total betatron phase advance/(2 π)	261.2
v_B : total betatron phase advance in arc regions/(2 π)	198

- PM = 792, arc sections take up > 80% circumference ٠
- About k * 2π betatron phase advance in each straight section & arc section ٠

	Super strong	Less strong	Regular
Imperfection resonance	$v_0 = nPM \pm [v_B]$	$v_0 = nP \pm [v_y]$	v_0 = n
Intrinsic resonance	$v_0 = nP \pm v_y$ near $nPM \pm [v_B]$	$v_0 = nP \pm v_y$	$v_0 = n \pm v_y$

 $g_{F/D} = \frac{1}{f}$, For FODO cells with

smaller.


 ε_{RING} = Enhancement Factor * $\varepsilon_{arc cell}$ + $\varepsilon_{straight sections}$ Enhancement Factor : $\zeta_M(x) = \frac{\sin M\pi x}{\sin \pi x}$, when x = integer, $\zeta_M(x) = M$ One FODO For intrinsic resonances $\varepsilon_{K} \approx \frac{1+G\gamma}{2\pi} \sqrt{\frac{\varepsilon_{N}}{2\pi}} \left\{ E_{P}^{+} \left[E_{M}^{+} \left(g_{F} \sqrt{\beta_{F}} - g_{D} \sqrt{\beta_{D}} e^{i \frac{K+\nu_{B}}{MP}} \right) + X_{ins} \right] + E_{P}^{-} \left[E_{M}^{-} \left(g_{F} \sqrt{\beta_{F}} - g_{D} \sqrt{\beta_{D}} e^{i \frac{K-\nu_{B}}{MP}} \right) + X_{ins} \right] \right\}$

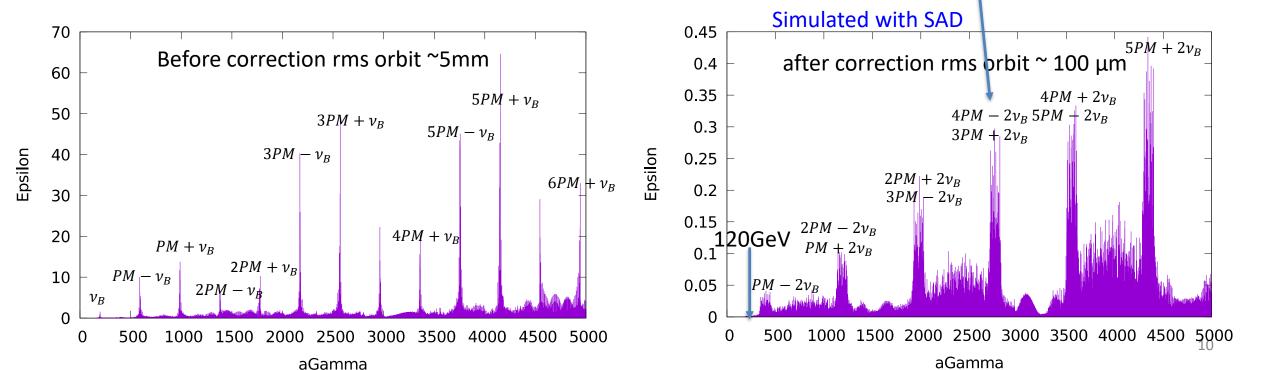
• Enhancement factor: $E_P^{\pm} \approx \zeta_P(\frac{K \pm \nu_Z}{P})$; $E_M^{\pm} \approx \zeta_M(\frac{K \pm \nu_B}{PM})$

same phase shift: $\sin \frac{\phi}{2} = \frac{L}{2f}$ For large ring lake CEPC ,L is larger so $g_{F/D}$ and resonance strength is 8

Intrinsic spin resonance structure

CEPC CDR Booster: $P = 8; M = 99; v_B = 198$

Imperfection spin resonance structure


Closed orbit: $z_{co}(s) = \beta_z^{\frac{1}{2}}(s) \sum_{-\infty}^{\infty} \frac{\nu_z^2 f_k e^{ik\phi(s)}}{\nu_z^2 - k^2}$

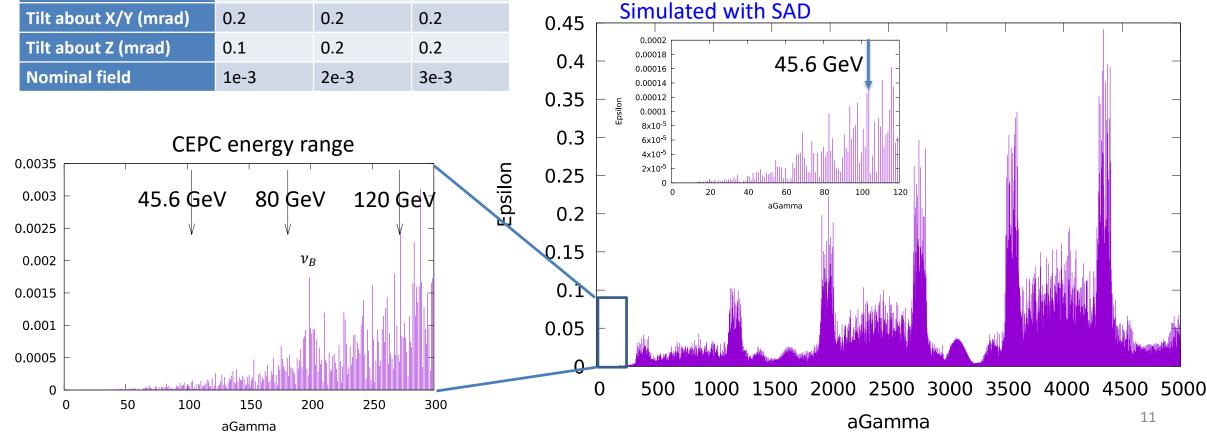
• The orbit correction eliminates f_k near[v_z]

• Imperfection resonance strength:
$$\epsilon_K = \frac{1+G\gamma}{2\pi} \sum_{-\infty}^{\infty} \sqrt{\frac{\nu_Z^2 f_k}{\nu_Z^2 - k^2}} e^{i\frac{P-1}{P}(k+K)\pi} \zeta_P\left(\frac{k+K}{P}\right) \times \left\{\zeta_M\left(\frac{K+k\frac{\nu_B}{\nu_Z}}{MP}\right) \times \left[g_D\beta_Z^{\frac{1}{2}}(D) - \frac{k+K}{2}\right]\right\}$$

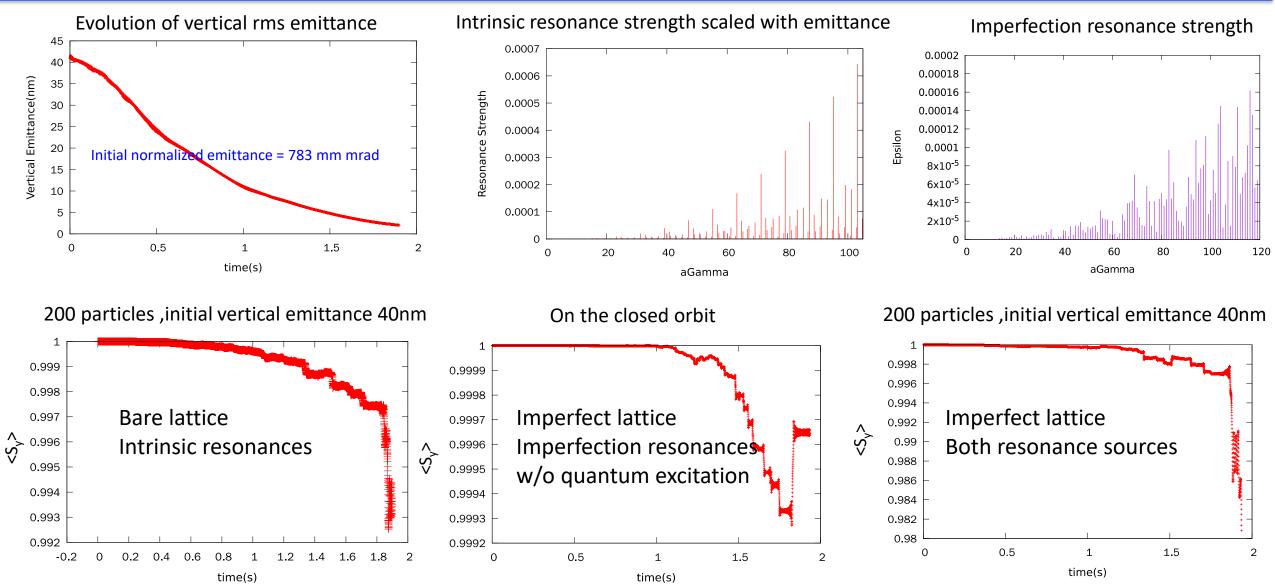
 $g_F \beta_z^{\frac{1}{2}}(F) e^{-\frac{i\left(K + \frac{k\nu_B}{\nu_z}\right)\pi}{MP}} + X_I \}$

The position of the peak is shifted and the preceding and following peaks are coincident

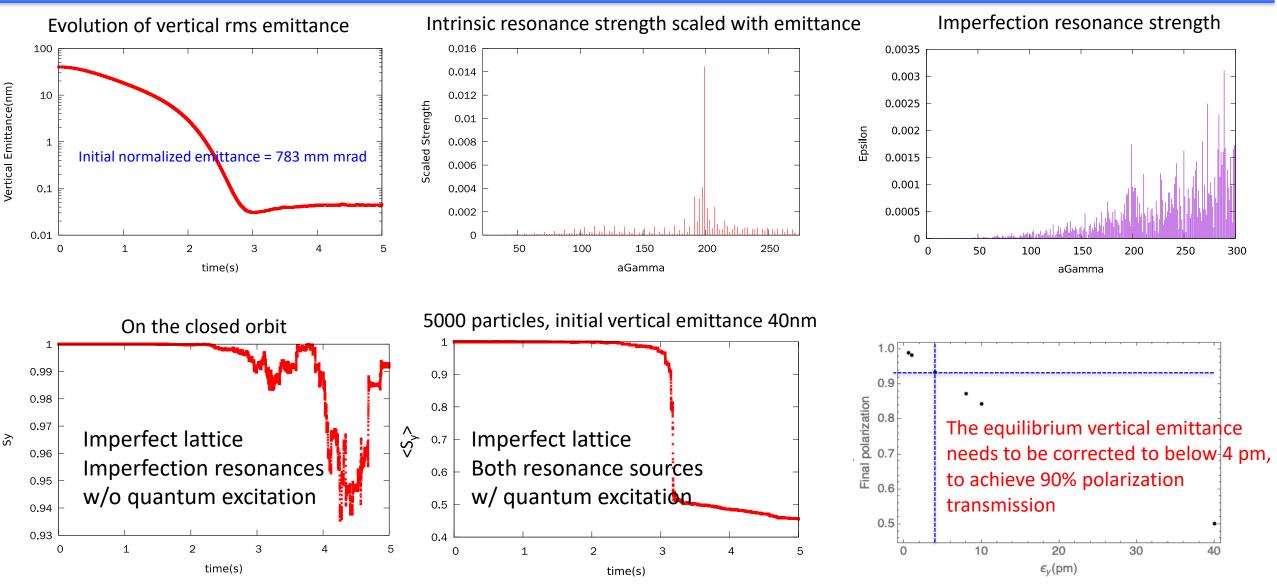
Imperfection spin resonance structure


Error setting in the lattice, rms vertical closed orbit is \sim 100 μ m in this seed

	Dipole	Quadrupole	Sextupole
Transverse shift X/Y (μm)	100	100	100
Longitudinal shift Z (µm)	100	150	100
Tilt about X/Y (mrad)	0.2	0.2	0.2
Tilt about Z (mrad)	0.1	0.2	0.2
Nominal field	1e-3	2e-3	3e-3

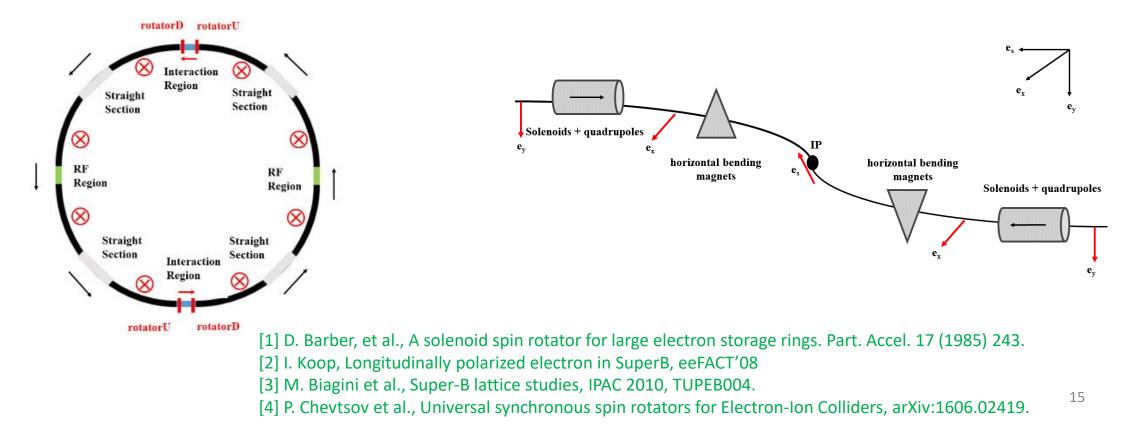

Epsilon

Calculated using one corrected lattice with error


$$\epsilon_{K} = -\frac{1+a\gamma}{2\pi} \oint z'' e^{iK\theta} ds \approx -\frac{1+a\gamma}{2\pi} \sum_{i} (z'_{i+1} - z'_{i}) e^{iK\theta_{i}}$$

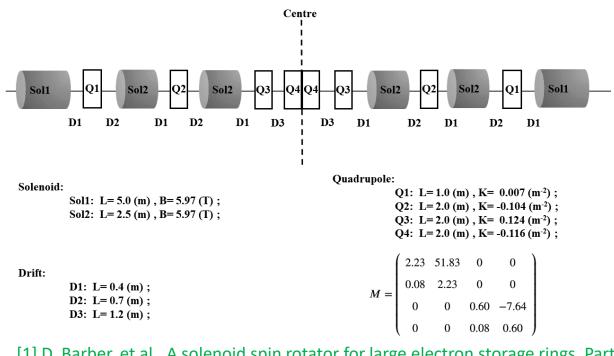
Simulation of polarization transmission to 45.6 GeV

Simulation of polarization transmission to 120 GeV

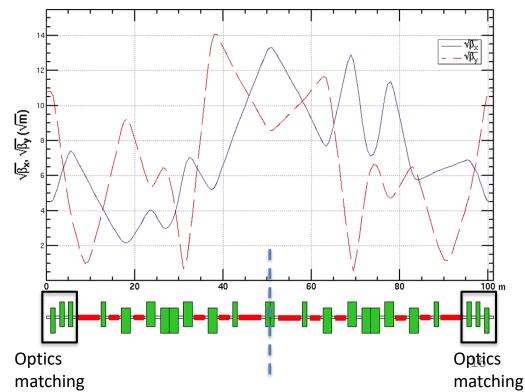

Short summary on polarization maintenance in booster

Findings:

- A large ramping rate of spin precession frequency α, due to the large circumference
- Spin resonances are generally weak, due to the high periodicity & cancellation
- Depolarization is negligible, in the fast crossing regime $\frac{\epsilon}{\sqrt{\alpha}} \ll 0.1$, up to 45.6 GeV
- The strong intrinsic resonance at ~ 87 GeV leads to large depolarization, and hurts the polarization transmission up to 120 GeV, potential mitigations:
 - A new lattice with the first strong intrinsic resonance larger than 120 GeV
 - The above study used the lattice of CDR, In the new design of TDR the condition is satisfied.
 - Control the vertical equilibrium beam emittance to below ~ 4 pm (coupling ~ 0.1%)
- Further research is needed on the tolerance of the highly efficient polarization transmission to the corrected closed-orbit amplitude


Spin rotators in the collider ring at Z-pole

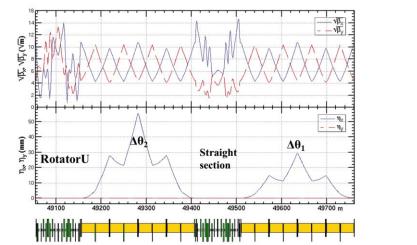
- Solenoid-based spin rotator + anti-symmetric arrangement [1,2,3] (W. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2)
 - Successfully implemented in the collider ring lattice
 - Now focus on Z-pole, extendable to cover higher beam energies using interleaved solenoid+dipole scheme [4]

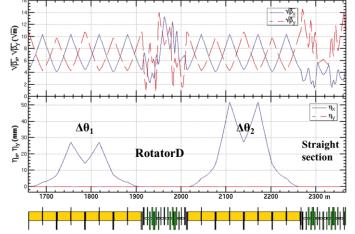


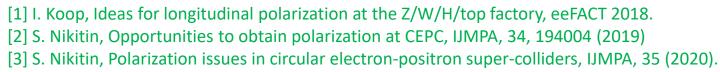
Spin rotators @ Z-pole

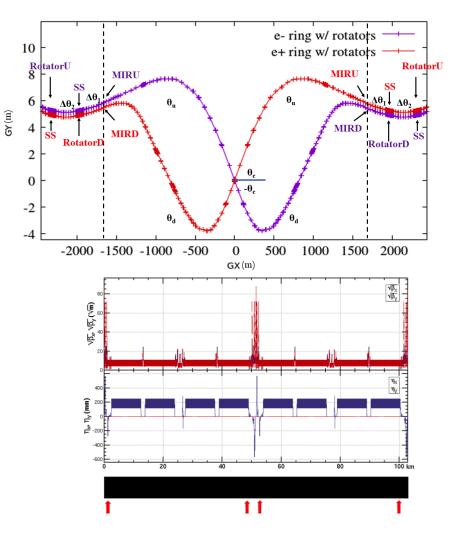
- Solenoid-based spin rotators
 - Integral solenoid field strength = 240 T m @ 45.6 GeV
 - Utilize the solenoid decoupling model developed for HERA [1]
 - Each solenoid section contains two modules (~100 m total length)

[1] D. Barber, et al., A solenoid spin rotator for large electron storage rings. Part. Accel. 17 (1985) 243.




Spin rotators @ Z-pole


- Anti-symmetric arrangement [1,2,3]
 - $\theta_c = 2*16.5$ mrad, rather than the ideal value 2*15.17 mrad
 - Angle compensation sections $\Delta \theta_1$ (1.39mrad) and $\Delta \theta_2$ (2.65mrad)


 $a\gamma(heta_u + \Delta heta_1 + \Delta heta_2) = -rac{\pi}{2}$ $a\gamma(heta_d + \Delta heta_1) = rac{\pi}{2}.$

Straight sections (SS) w/o solenoids

Performance evaluation: orbital motion

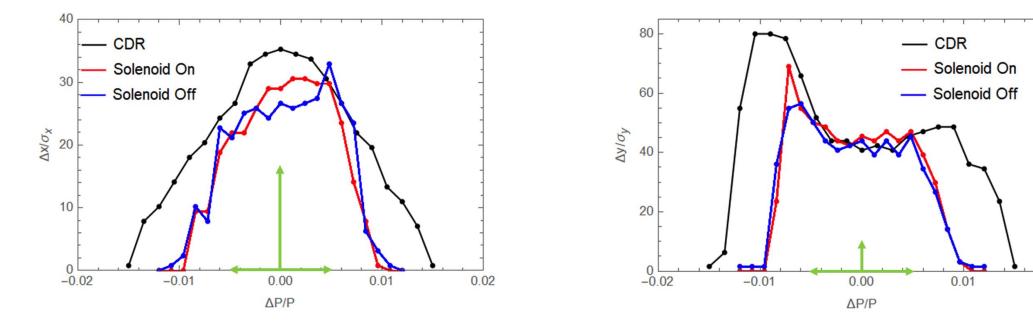
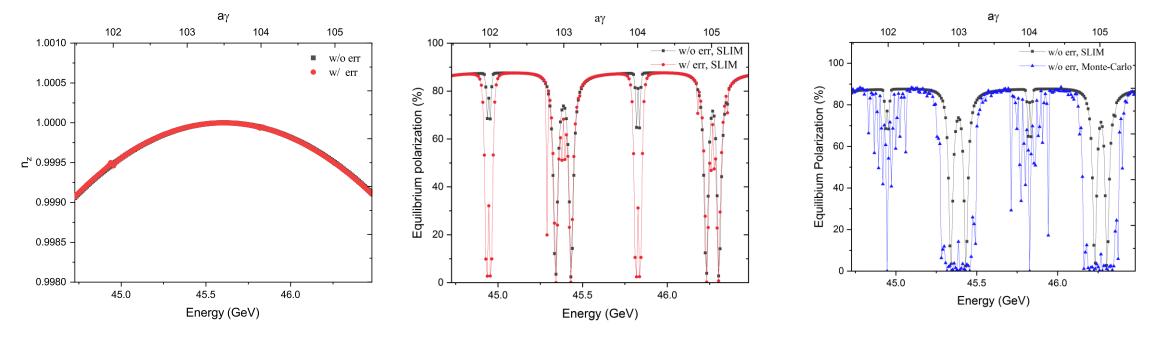

• Changes in optics parameters

Table 1 The comparison of several key orbital parameters between the insertion scheme and the CDR lattice at the Z-pole

- Increase of circumference ~ 2.8 km, can be optimized.
- Increase of integer betatron tunes by 18 units

	CDR Lattice	Solenoids On	Solenoids Off
Tunes $\nu_x/\nu_y/\nu_z$	363.11/365.22/0.028	381.11/383.22/0.028	381.11/383.22/0.028
Emittances ϵ_x/ϵ_z	$0.18~\mathrm{nm}/0.886~\mu\mathrm{m}$	$0.18~{ m nm}/0.886~{ m \mu m}$	$0.18~{ m nm}/0.886~{ m \mu m}$
Momentum compact factor α_p	$1.11 imes 10^{-5}$	$1.07 imes10^{-5}$	$1.07 imes 10^{-5}$
Circumference (m)	100016.35	102841.95	102841.95
SR energy loss per turn U_0 (MeV)	35.47	35.91	35.91
β -function at IPs $\beta_x^{\star}/\beta_y^{\star}$	0.2/0.001	0.2/0.001	0.2/0.001

• Dynamic aperture shrinks a bit, but further optimization using more sextupole families could help recover.


0.02

Performance evaluation: polarization

Bmad/PTC simulations show:

- Weak dependence of \hat{n}_0 over energy in the working energy range
- Errors in solenoid sections lead to enhanced but acceptable depolarization near first-order spin resonances
 - Rms relative field error of 5e-4 for solenoids & quadrupoles, roll error of 1e-4 for quadrupoles.
- A sufficient large safe region exists, that enables $\tau_{DK} \gg \tau_b$ thus $P_{avg} \approx P_{inj}$, when higher-order spin resonances are also considered

$$- P_{\text{avg}} \approx P_{\text{inj}} / (1 + \frac{92\%}{P_{\text{eq}}} \frac{\tau_b}{\tau_{BKS}}), \tau_b \sim 2 \text{ hours, } \tau_{BKS} \sim 260 \text{ hours, if } P_{\text{eq}} = 7\%, \text{ then } P_{\text{avg}} \approx P_{\text{inj}} / 1.2\%$$

Summary

- First-order issues to realize longitudinal polarized colliding beams at CEPC-Z (45.6 GeV) have been addressed
 - Beam polarization can be well preserved in the booster, without additional hardware
 - Spin rotators implemented in the collider ring, shows promising performance
 - This also provides an alternative scenario for resonant depolarization applications
- The current studies will be extended to higher beam energies, for example CEPC-Higgs (120 GeV), many issues to be solved
 - Polarization maintanance in the booster
 - Spin rotator design in the collider ring
 - Radiative depolarization due to machine imperfections in the collider ring

Thank you for your attention!