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• Physics design:

– Tao Chen, Zhe Duan, Hongjin Fu, Jie Gao, Sergei Nikitin (BINP), Dou Wang,
Jiuqing Wang, Yiwei Wang, Wenhao Xia(graduated)

• Polarized electron source & linac:

– Xiaoping Li, Cai Meng, Jingru Zhang

• Polarimeter:

– Shanhong Chen, Yongsheng Huang, Guangyi Tang
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• Discussions with D. P. Barber (DESY) on polarization theories and simulations are illuminating.  
• Helpful discussions with E. Forest (KEK) & D. Sagan (Cornell) on usage of Bmad/PTC are acknowledged.



Motivation of CEPC polarized beam program
Vertically polarized beams in the arc

– Beam energy calibration via the resonant 

depolarization technique

– Essential for precision measurements of Z and 

W properties

– At least 5% ~ 10% vertical polarization, for both 

e+ and e- beams

Longitudinally polarized beams at IPs

– Beneficial to colliding beam physics 

programs at Z, W and Higgs

– Figure of merit:  Luminosity * f( Pe+, Pe- )

– ~50% or more longitudinal polarization is 

desired, for one beam, or both beams

• Supported by National Key R&D Program 2018-2023 to design longitudinally polarized colliding beams at Z-pole.
• The study in this presentation is based on CEPC CDR lattice & parameters.
• Will be included as a Chapter in the Appendix in the CEPC TDR.

L. Arnaudon, et al., Z. Phys. C 66, 45-62 (1995). 
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Self-polarization vs injection of polarized beams for the collider ring

• Decay mode
– 𝑃 𝑡 = 𝑃ens,DK 1 − 𝑒−𝑡/𝜏DK + 𝑃inj𝑒

−𝑡/𝜏DK,   

–
1

𝜏𝐷𝐾
=

1

𝜏𝐵𝐾𝑆
+

1

𝜏dep
,

1

𝜏𝐵𝐾𝑆[s]
≈

2𝜋

99

𝐸 GeV 5

𝐶 m 𝜌 m 2,

– 𝑃ens,DK ≈
92%

1+𝜏𝐵𝐾𝑆/𝜏dep

• In new e+e- circular colliders, a longer 𝜏𝑏 suggests a lower luminosity

• Injection of polarized beams is required to reach a high 𝑃avg without sacrificing luminosity

– Key: mitigate radiative depolarization ( to achieve a longer 𝜏dep ) to maintain 𝜏𝐷𝐾 ≫ 𝜏𝑏
• More challenging at higher beam energies at CEPC
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CEPC CDR parameters 45.6 GeV (Z, 2T) 80 GeV (W) 120 GeV (Higgs)

𝜏𝑏 (hour) 2.5 1.4 0.43

𝜏𝐵𝐾𝑆 (hour) 256 15.2 2.0

𝑃ens,DK required to realize 𝑃avg ≥ 50%, if 𝑃inj = 80% 0.6% 5% 11%

• Top-up injection

• 𝑃avg ≈
𝑃ens,DK

1+𝜏DK/𝜏b
+

𝑃inj

1+𝜏b/𝜏DK

• If 𝜏𝑏 ≫ 𝜏𝐷𝐾, then 𝑃avg ≈ 𝑃ens,DK
• If 𝜏𝐷𝐾 ≫ 𝜏𝑏, then 𝑃avg ≈ 𝑃inj



Longitudinal polarization @ CEPC

– In the injector:   preparation and maintenance of highly polarized e- (e+) beam(s).

• Polarized source: polarized e- gun (specs defined), polarized e+ source (preliminary study)

• Booster: polarization maintenance (underway)

• Transfer lines: ensure the matching of polarization directions (to be studied)

– In the collider ring:  

• spin rotators - >  longitudinal polarization[1] (done)

• ensure 𝜏𝐷𝐾 ≫ 𝜏𝑏, then 𝑃avg ≈ 𝑃inj

• Compton polarimeter[2] (under way)
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[1] W. H. Xia et al., RDTM (2022) doi: 10.1007/s41605-022-00344-2
[2] S. H. Chen et al., JINST 17, P08005, (2022)



Polarized e-/e+ source for > 50% polarization

• A polarizing/damping ring for e+, using high-field asymmetric wigglers [1]
– Detailed design study is under way

• Low-emittance lattice design w/ very strong wigglers
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RF cavity

RF cavity

Wigglers

Wigglers

Injection

Extraction

An asymmetric wiggler @BESSY-II as WLS,
A. M. Batrakov, et al., APAC 2001, pp251-253.

Tentative parameters

Parameter ILC(TDR) CLIC(3TeV) CEPC

Electrons/microbunch 2×1010 0.6×1010 >0.94×1010

Charge / microbunch 3.2nC 1nC 1.5nC

Number of microbunches 1312 312 1

Macropulse repetition rate 5 50 100

Average current from gun 21μA 15μA 0.15μA

Polarization >80% >80% >80%

• Polarized e- source is matured technology Parameters of CEPC polarized electron source

Gun type Photocathode DC Gun

Cathode material Super-lattice GaAs/GaAsP

HV 150-200kV

QE 0.5%

Polarization ≥85% 

Electrons/bunch 2×1010

Repetition rate 100Hz

Drive laser 780nm (±20nm), 10μJ@1ns

[1] Z. Duan et al., IPAC 2019, MOPMP012.



Polarization maintenance in synchrotron/booster
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• 𝐽𝑠 = Ԧ𝑆 ∙ 𝑛 is an adiabatic invariant
• 𝜐0 ≈ 𝑎𝛾0 and 𝑛0 changes during acceleration. When crossing a spin resonance, |𝐽𝑠| could vary

due to non-adiabaticity, leading to depolarization described by Froissart-Stora formula[1]:

• Two factors: spin resonance strength ε and acceleration rate 𝛼~10−6
𝑑𝐸

𝑑𝑡
GeV/s 𝐶[km]

• Polarization is maintained (ΔP < 1%) if

• Fast crossing:  
𝜖

𝛼
≪ 0.06

• Slow crossing: 
𝜖

𝛼
≫ 1.82, spin flip 

[1] Froissart and Stora, NIM 7, 297 (1960) [2] A. K. Barladyan, et al., PRAB 22, 112804, (2019)
[3] S. Nakamura, et al., NIM A 411, 93 (1998) [4] T. Khoe et al., Part. Accel. 6, 213 (1975)
[5] Configuration Manual: Polarized Proton Collider at RHIC, 2006 [6] V. Ranjbar, et al., PRAB 21, 111003 (2018)



Spin resonance structure
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εRING = Enhancement Factor * εarc cell + ε straight sections

• Enhancement Factor : 𝜁𝑀 𝑥 =
sin 𝑀𝜋𝑥

sin 𝜋𝑥
, when x = integer , 𝜁𝑀 𝑥 = M

Super strong Less strong Regular

Imperfection resonance 𝜈0 = 𝑛𝑃𝑀 ± [𝜐𝐵] 𝜈0 = 𝑛𝑃 ± [𝜐𝑦] 𝜈0 = n

Intrinsic resonance 𝜈0 = 𝑛𝑃 ± 𝜐𝑦 near 𝑛𝑃𝑀 ± [𝜐𝐵] 𝜈0 = 𝑛𝑃 ± 𝜐𝑦 𝜈0 = 𝑛 ± 𝜐𝑦

For intrinsic resonances

𝜀𝐾 ≈
1+𝐺𝛾

2𝜋

𝜀𝑁

𝜋𝛾
𝐸𝑃
+[𝐸𝑀

+ 𝑔𝐹 𝛽𝐹 − 𝑔𝐷 𝛽𝐷𝑒
𝑖
𝐾+𝜈𝐵
𝑀𝑃 + 𝑋𝑖𝑛𝑠 + 𝐸𝑃

−[𝐸𝑀
− 𝑔𝐹 𝛽𝐹 − 𝑔𝐷 𝛽𝐷𝑒

𝑖
𝐾−𝜈𝐵
𝑀𝑃 + 𝑋𝑖𝑛𝑠]}

• Enhancement factor: 𝐸𝑃
± ≈ 𝜁𝑃(

𝐾±𝜈𝑧

𝑃
) ; 𝐸𝑀

± ≈ 𝜁𝑀(
𝐾±𝜈𝐵

𝑃𝑀
)

[1] S. Y. Lee, Spin Dynamics and snakes in synchrotrons, World Scientific, 1997, [2] V. Ranjbar, et al., PRAB 21, 111003 (2018)

• PM = 792, arc sections take up > 80% circumference
• About k * 2π betatron phase advance in each straight section & arc section  

One FODO

Parameter of CEPC CDR Booster Value

P:   number of periodicities 8

M: number of unit cells in each arc region (per period) 99

𝜈𝑦: total betatron phase advance/(2π) 261.2

𝜈𝐵: total betatron phase advance in arc regions/(2π) 198

𝑔𝐹/D =
1

𝑓
, For FODO cells with 

same phase shift: sin
𝜙

2
=

𝐿

2𝑓

For large ring lake CEPC ,L is larger 
so 𝑔𝐹/D and resonance strength is 

smaller.



Intrinsic spin resonance structure
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𝜈𝐵

𝑃𝑀 − 𝜈𝐵
𝑃𝑀 + 𝜈𝐵

2𝑃𝑀 − 𝜈𝐵

2𝑃𝑀 + 𝜈𝐵

3𝑃𝑀 − 𝜈𝐵

3𝑃𝑀 + 𝜈𝐵

4𝑃𝑀 − 𝜈𝐵
4𝑃𝑀 + 𝜈𝐵

5𝑃𝑀 − 𝜈𝐵

5𝑃𝑀 + 𝜈𝐵

6𝑃𝑀 − 𝜈𝐵

𝜀𝑁 = 10 𝑚𝑚 ∙ 𝑚𝑟𝑎𝑑

45.6GeV

CEPC CDR Booster： 𝑃 = 8;𝑀 = 99; 𝜈𝐵 = 198

80GeV 120GeV

45.6GeV

𝜈𝐵

𝜖K,intrinsic~𝛾 εrms

Simulated with DEPOL [1]

[1] E. Courant and R. Ruth, BNL-52170, 1980



Imperfection spin resonance structure
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Simulated with SAD

Closed orbit:  𝑧co(𝑠) = 𝛽z

1

2(𝑠)σ−∞
∞ 𝜈𝑧

2𝑓𝑘𝑒
𝑖𝑘𝜙(𝑠)

𝜈𝑧
2−𝑘2

• The orbit correction eliminates 𝑓𝑘 near[𝜈𝑧]

• Imperfection resonance strength: 𝜖𝐾 =
1+𝐺𝛾

2𝜋
σ−∞
∞ 𝜈𝑧

2𝑓𝑘

𝜈𝑧
2−𝑘2

𝑒𝑖
𝑃−1

𝑃
𝑘+𝐾 𝜋𝜁𝑃

𝑘+𝐾

𝑃
× {𝜁𝑀(

𝐾+𝑘
𝜈𝐵
𝜈𝑧

𝑀𝑃
) ×

ቈ



𝑔𝐷𝛽z

1

2 D −

𝑔𝐹𝛽z

1

2 F 𝑒−
𝑖 𝐾+

𝑘𝜈𝐵
𝜈𝑧

𝜋

𝑀𝑃 + 𝑋𝐼}

after correction rms orbit ~ 100 μmBefore correction rms orbit ~5mm

𝑃𝑀 − 𝜈𝐵

𝑃𝑀 + 𝜈𝐵

5𝑃𝑀 + 𝜈𝐵

4𝑃𝑀 + 𝜈𝐵

3𝑃𝑀 + 𝜈𝐵

6𝑃𝑀 + 𝜈𝐵

2𝑃𝑀 + 𝜈𝐵

𝜈𝐵
2𝑃𝑀 − 𝜈𝐵

5𝑃𝑀 − 𝜈𝐵
3𝑃𝑀 − 𝜈𝐵

𝑃𝑀 − 2𝜈𝐵

3𝑃𝑀 − 2𝜈𝐵

5𝑃𝑀 − 2𝜈𝐵

𝑃𝑀 + 2𝜈𝐵

2𝑃𝑀 − 2𝜈𝐵

2𝑃𝑀 + 2𝜈𝐵

3𝑃𝑀 + 2𝜈𝐵

4𝑃𝑀 − 2𝜈𝐵

4𝑃𝑀 + 2𝜈𝐵

The position of the peak is shifted and the preceding and 
following peaks are coincident

120GeV

5𝑃𝑀 + 2𝜈𝐵



Imperfection spin resonance structure
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Dipole Quadrupole Sextupole

Transverse shift X/Y
(μm)

100 100 100

Longitudinal shift Z
(μm)

100 150 100

Tilt about X/Y (mrad) 0.2 0.2 0.2

Tilt about Z (mrad) 0.1 0.2 0.2

Nominal field 1e-3 2e-3 3e-3

Calculated using one corrected lattice with error

Error setting in the lattice, rms vertical closed orbit is ~ 100 μm in this seed

𝜖𝐾 = −
1 + 𝑎𝛾

2𝜋
ර𝑧′′𝑒𝑖𝐾𝜃𝑑𝑠 ≈ −

1 + 𝑎𝛾

2𝜋


𝑖

(𝑧𝑖+1
′ −𝑧𝑖

′)𝑒𝑖𝐾𝜃𝑖

CEPC energy range

45.6 GeV 80 GeV 120 GeV

45.6 GeV

𝜈𝐵

Simulated with SAD



Simulation of polarization transmission to 45.6 GeV
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200 particles ,initial vertical emittance 40nm 

Intrinsic resonance strength scaled with emittance

Bare lattice
Intrinsic resonances

Imperfect lattice
Imperfection resonances
w/o quantum excitation

On the closed orbit 200 particles ,initial vertical emittance 40nm 

Imperfect lattice
Both resonance sources

Evolution of vertical rms emittance Imperfection resonance strength 

<S
y>

<S
y>

Initial normalized emittance = 783 mm mrad

<S
y>



Simulation of polarization transmission to 120 GeV
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Intrinsic resonance strength scaled with emittance

Imperfect lattice
Imperfection resonances
w/o quantum excitation

On the closed orbit 5000 particles, initial vertical emittance 40nm 

Imperfect lattice
Both resonance sources
w/ quantum excitation

Evolution of vertical rms emittance Imperfection resonance strength 

The equilibrium vertical emittance 
needs to be corrected to below 4 pm, 
to achieve 90% polarization 
transmission 

<S
y>

Initial normalized emittance = 783 mm mrad



Short summary on polarization maintenance in booster

Findings:

• A large ramping rate of spin precession frequency α, due to the large circumference

• Spin resonances are generally weak, due to the high periodicity & cancellation

• Depolarization is negligible, in the fast crossing regime 
𝜖

𝛼
≪ 0.1, up to 45.6 GeV

• The strong intrinsic resonance at ~ 87 GeV leads to large depolarization, and hurts the 
polarization transmission up to 120 GeV, potential mitigations:
– A new lattice with the first strong intrinsic resonance larger than 120 GeV

• The above study used the lattice of CDR， In the new design of TDR the condition is satisfied.

– Control the vertical equilibrium beam emittance to below ~ 4 pm (coupling ~ 0.1% ) 

• Further research is needed on the tolerance of the highly efficient polarization transmission to 
the corrected closed-orbit amplitude
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Spin rotators in the collider ring at Z-pole
• Solenoid-based spin rotator + anti-symmetric arrangement [1,2,3] (W. Xia et al., RDTM (2022) doi:

10.1007/s41605-022-00344-2 )

– Successfully implemented in the collider ring lattice

– Now focus on Z-pole, extendable to cover higher beam energies using interleaved solenoid+dipole scheme [4]
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[1] D. Barber, et al., A solenoid spin rotator for large electron storage rings. Part. Accel. 17 (1985) 243.
[2] I. Koop, Longitudinally polarized electron in SuperB, eeFACT’08
[3] M. Biagini et al., Super-B lattice studies, IPAC 2010, TUPEB004.
[4] P. Chevtsov et al., Universal synchronous spin rotators for Electron-Ion Colliders, arXiv:1606.02419.



Spin rotators @ Z-pole

• Solenoid-based spin rotators

– Integral solenoid field strength = 240 T m @ 45.6 GeV

– Utilize the solenoid decoupling model developed for HERA [1]

– Each solenoid section contains two modules (~100 m total length)

16Optics 
matching

Optics 
matching

[1] D. Barber, et al., A solenoid spin rotator for large electron storage rings. Part. Accel. 17
(1985) 243.



Spin rotators @ Z-pole

• Anti-symmetric arrangement [1,2,3]

– θc=2*16.5 mrad, rather than the ideal value 2*15.17 mrad

– Angle compensation sections Δθ1(1.39mrad) and Δθ2(2.65mrad)

– Straight sections (SS) w/o solenoids
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[1] I. Koop, Ideas for longitudinal polarization at the Z/W/H/top factory, eeFACT 2018. 
[2] S. Nikitin, Opportunities to obtain polarization at CEPC, IJMPA, 34, 194004 (2019)
[3] S. Nikitin, Polarization issues in circular electron-positron super-colliders, IJMPA, 35 (2020).



Performance evaluation: orbital motion
• Changes in optics parameters

– Increase of circumference ~ 2.8 km, can be optimized.

– Increase of integer betatron tunes by 18 units

• Dynamic aperture shrinks a bit, but further optimization using more sextupole families could help recover.
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Performance evaluation: polarization
Bmad/PTC simulations show:

• Weak dependence of ො𝑛0 over energy in the working energy range

• Errors in solenoid sections lead to enhanced but acceptable depolarization near first-order spin resonances

– Rms relative field error of 5e-4 for solenoids & quadrupoles, roll error of 1e-4 for quadrupoles.

• A sufficient large safe region exists, that enables 𝜏𝐷𝐾 ≫ 𝜏𝑏 thus 𝑃avg ≈ 𝑃inj , when higher-order spin 

resonances are also considered

– 𝑃avg ≈ 𝑃inj/(1 +
92%

𝑃eq

𝜏𝑏

𝜏𝐵𝐾𝑆
) , 𝜏𝑏~2 hours, 𝜏𝐵𝐾𝑆~260 hours, if Peq=7%, then 𝑃avg ≈ 𝑃inj/1.1
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Summary

• First-order issues to realize longitudinal polarized colliding beams at
CEPC-Z (45.6 GeV) have been addressed
– Beam polarization can be well preserved in the booster, without additional

hardware
– Spin rotators implemented in the collider ring, shows promising performance
– This also provides an alternative scenario for resonant depolarization

applications

• The current studies will be extended to higher beam energies, for
example CEPC-Higgs (120 GeV), many issues to be solved
– Polarization maintanance in the booster
– Spin rotator design in the collider ring
– Radiative depolarization due to machine imperfections in the collider ring
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Thank you for your attention!
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