JLab Compton Detectors – Lessons learned

Jefferson Lab Polarimetry Map

 $E_{beam} = 1-12 \text{ GeV}$ $I_{beam} \simeq 100 \text{ }\mu\text{A}$

P=85-90%

2

Compton Polarimeter Subsystems

- Laser both Hall A and Hall C use Fabry-Perot cavities to store >1 kW of laser power
 - Hall A: Originally used 1064 nm narrow linewidth laser alone. Later upgraded to a frequency-doubled (532 nm) system → modest input power (up to 1 W), high Finesse cavity
 - Hall C: Started with 532 laser (Coherent Verdi) → higher input power (10 W), modest Finesse cavity
- Photon detector
 - Hall A: started with multi-channel lead-tungstate detector. Now use GSO (low energy) or "single channel" lead-tungstate in integrating mode
 - Hall C: lead tungstate, integrating mode
- Electron detector
 - Hall A: silicon strip, Hall C, diamond strip
 - Both will be upgrading detectors to larger area diamond strip

Beam tuning

Typical initial beam tuning

Initially, backgrounds were not terrible, but still too large to see collisions – tuning required

Collisions with Great Signal to Noise

Once see collision optimize laser and electron beam interaction

Compton Operation Mode

Photon detector rates

Laser locks and unlocks regularly to allow measurement of backgrounds

- ightarrow Backgrounds highly dependent on beam quality
- → Sometimes extensive tuning is required to achieve good backgrounds *dominant background from beam interaction with apertures in beamline*
- \rightarrow Prebuncher phase setting can improve background linked to bunch length and beam halo

Photon detector

First measurement HAPPEX experiment differential method

Photon Detectors

Hall A originally extracted polarization by fitting asymmetry vs. energy using lead-tungstate detector → Carnegie-Mellon group suggested measured energy-weighted asymmetry – asymmetry integrated over helicity window

$$E^{\pm} = LT \int_{0}^{E_{\text{max}}} \varepsilon(E) E \frac{d\sigma}{dE}(E) \left(1 \pm P_{e} P_{\gamma} A_{l}(E)\right) dE \longrightarrow A_{Exp} = \frac{E^{+} - E^{-}}{E^{+} + E^{-}}$$

Same technique used in Hall C

- \rightarrow No threshold, so analyzing power well understood
- \rightarrow Less sensitive to understanding detector resolution
- → Understanding detector non-linearity over relevant range of signal size most significant challenge → LED pulser system

Lead-tungstate – high energy

Linearity measurement

GSO - low energy

Hall A Photon detector

- FADC readout SIS3320 250 MHz FADC
- Digital integration

Photon integrated method

- 1 large detector block containing all the shower gives best results because of simpler detector response
- Very successful at low energies with GSO : 1 to 3 GeV best polarization accuracies at 1% level at 1 GeV and ~0.6% at 3 GeV
- More sensitive to background
 - Low energy PREX : GSO sensitive to neutron background
 - 6 GeV data : accumulator 0 odd behavior, most likely due to large low energy background from synchrotron
 - Optimize shielding in front of calorimeter
 - Use thresholds to reduce background
 - Still need to take more high energy data

Happex III results

Upgraded photon calorimeter with integrating readout for Hall A Compton Polarimeter at Jefferson Lab

Friend Nucl.Instrum.Meth. A676 (2012) 96-105

Friend Phd Thesis CMU 2012

Hall A Compton Polarimeter – Recent Results

CREX Experiment – 2019-2020

CREX Polarization Measurements (Compton & Moller)

CREX Compton analysis: dP/P = 0.52% Photon detector only (electron detector not fully functional)

Beam Polarization [pct]

Photon detector for polarization measurements
 → Electron detector installed, but used primarily for tests and commissioning new VETROC-based DAQ

Photon detector measurements made using thresholdless, energy-integrating technique

$$E^{\pm} = LT \int_{0}^{E_{\text{max}}} \varepsilon(E) E \frac{d\sigma}{dE} (E) \left(1 \pm P_{e} P_{\gamma} A_{l}(E)\right) dE$$
$$A_{Exp} = \frac{E^{+} - E^{-}}{E^{+} + E^{-}}$$

Results in reduced sensitivity to absolute detector response

Source	$\frac{dP}{P}(\%)$	
Collimator offset	0.20	
Laser DOCP	0.45	
Gain shift	0.15	
Nonlinearity	0.02	
Model	0.05	
Beam energy	0.05	
Statistics	0.02	
Total	0.52	

Electron detectors

Hall A Compton Electron Detector

Silicon strip electron detector worked well for most of 6 GeV \rightarrow replaced around the same time as upgrade of laser system

→ Updated system did not perform well – excess noise required high thresholds, resulting in low efficiency

Hall A: silicon strip
 → 4.6 cm vertical coverage
 → 192 strips, 240 µm pitch
 ¹⁸ Jefferson Lab

Hall A Compton electron detector

- Silicon microstrip detector
- 500 μ m thick 250 μ m thick
- 192 strips = 4.8 cm
- 4 planes
- 768 channels
- Vertical motion
- Detector -> Flex -> PCB -> Electronics

Capacitance from PCB boards

Hall A possible fix

- Same chambers as diamond detector with similar cable length and electronics
- Also investigating ASIC on detector for best signal to noise

Hall C Compton Electron Detector

Diamond microstrips used to detect scattered electrons

- \rightarrow Four 21mm x 21mm planes each with 96 horizontal 200 μ m wide micro-strips.
- \rightarrow Rough-tracking based/coincidence trigger suppresses backgrounds

Plane 4

 \rightarrow Detector inside vacuum can – electronics outside \rightarrow efficiency ok (>80%), but some variation strip-to-strip

Plane 1

Compton polarimeter electron detector

- Silcon or diamond strip option
- About 200 to 250 strips
 250 μm width
- 5 cm length to catch zero crossing

experimental asymmetry Run: 25454, Plane 1

Hall C Compton Systematic Uncertainties (electron detector)

Scale uncertainty = 0.42%

Point-to-point uncertainty = 0.41%

Total systematic uncertainty = 0.59%

Hall C Compton performance summarized in:

Narayan et al, Phys. Rev. X 6 (2016) 1, 011013

Photon detector had significantly larger systematic uncertainties – difficult to constrain non-linearity under load

~	Uncer-	$\Delta P/P$
Source	tainty	(%)
Laser polarization	0.18~%	0.18
3^{rd} Dipole field	$0.0011 { m T}$	0.13
Beam energy	$1 { m MeV}$	0.08
Detector Z position	$1 \mathrm{mm}$	0.03
Trigger multiplicity	1-3 plane	0.19
Trigger clustering	$1-8 \ {\rm strips}$	0.01
Detector tilt (X)	1°	0.03
Detector tilt (Y)	1°	0.02
Detector tilt (Z)	1°	0.04
Strip eff. variation	0.0 - 100%	0.1
Detector Noise	$\leq 20\%$ of rate	0.1
Fringe Field	100%	0.05
Radiative corrections	20%	0.05
DAQ ineff. correction	40%	0.3
DAQ ineff. pt-to-pt		0.3
Beam vert. angle variation	$0.5 \mathrm{\ mrad}$	0.2
helicity correl. beam pos.	$5 \mathrm{nm}$	< 0.05
helicity correl. beam angle	$3 \mathrm{nrad}$	< 0.05
spin precession through chicane	20 mrad	< 0.03
Total		0.59
		24

Jefferson Lat

Summary

- Hall A and C have leveraged many years of polarization measurements to incrementally improve polarimeters to achieve high precision
- Compton require some dedicated beam tuning time as sometime injector setting need to be tuned for background
- Hall A GSO photon detector very successful with integrated method in 1 to 3 GeV range
- Electron detector
 - Diamond worked well with reasonable efficiency with careful setup
 - Silicon strip
 - Issues in Hall A
 - Capacitance
 - Scaling from 48 to 192 channels not trivial : cross talk
 - Upgrade to diamond detector, new chamber and on-detector electronics
- Developments ongoing for 12 GeV Moller experiment

