Introduction	Polarimeters	Detectors	Quartz Cherenkov detector prototype)	Conclusions

Detector R&D for ILC Compton Polarimeters

Annika Vauth (now in LGAD R&D), Benedikt Vormwald (now in CMS), and Jenny List

FCC EPOL Workshop

September 22, 2022

Introduction	Polarimeters	Detectors	Quartz Cherenkov detector prototype)	Conclusions

Compton Polarimeters

Detector R&D

Conclusions

Polarimeters	Detectors	Quartz Cherenkov detector prototype)	Conclusions

Compton Polarimeters

Detector R&D

Conclusions

Conclusions

Polarimetry concept.

Goal for ILC polarimetry: per-mille level precision on luminosity weighted average polarisation at the IP, $\langle P_z \rangle_{IP} = \frac{\int P_z(t)\mathcal{L}(t)dt}{\int \mathcal{L}(t)dt}$

- (1) Compton polarimeter measurements upstream and downstream of the e^+e^- interaction point
- 2 Spin tracking to relate these measurements to the polarization at the e^+e^- interaction point
- 3 Long-term average determined from e^+e^- collision data as absolute scale calibration

Introduction	Detectors	Quartz Cherenkov detector prototype)	Conclusions

Compton Polarimeters

Detector R&D

Conclusions

ILC Polarimeter Detectors | J. List (DESY/CERN) | FCC-EPOL, Sep 22, 2022 | 3/20

Upstream Polarimeter.

- > fast measurement: $\mathcal{O}(10^3)$ Compton scatterings/bunch
- Energy spectrum of scattered e^+/e^- depends on product of longitudinal lepton (P) and circular laser (λ) polarisations
- > Magnetic chicane: energy distibution \rightarrow (horizontal) position distribution
- > Measure number of e^+/e^- per detector channel
- Transverse polarisation: need vertical position as well

Upstream Polarimeter.

- > fast measurement: $\mathcal{O}(10^3)$ Compton scatterings/bunch
- Energy spectrum of scattered e^+/e^- depends on product of longitudinal lepton (\mathcal{P}) and circular laser (λ) polarisations
- > Magnetic chicane: energy distibution \rightarrow (horizontal) position distribution
- > Measure number of e^+/e^- per detector channel
- Transverse polarisation: need vertical position as well

ILC Polarimeter Detectors | J. List (DESY/CERN) | FCC-EPOL, Sep 22, 2022 | 3/20

Design of the Upstream Polarimeter Chicane.

Why a 4-Dipole-Chicane?

- Compton spectrum position at detector independent of E_{beam} if B-field constant
- > price to pay: Compton IP moves laterally with E_{beam}

Detectors

The Downstream Polarimeter .

- 6-magnet chicane kicks Compton signal out of synchrotron fan
- \succ more background \Rightarrow higher laser intensity for enough signal
- TDR design assumes laser can only fire at one bunch / train revisit – based on laser technology from 20 years ago!

Measurement Precision.

ILC Goal: total uncertainty $\delta P/P \approx 0.25$ % for $|P| \simeq 80\%$

source of uncertainty	$\delta P/P$		
	SLC achieved	ILC goals	
laser polarisation	0.1%	0.1%	
analyzing power	0.4%	0.15% – 0.2%	
detector linearity	0.2%	0.1%	
electronic noise and beam jitter	0.2%	0.05%	
Total	0.5%	0.25%	

- ► laser: precision non-trivial ⇒ exploit synergies with other polarimeters and experiments (e.g. LUXE))
- \blacktriangleright detector linearity, electronic noise: \Rightarrow detector design & calibration
- beam jitter: much smaller at ILC due to luminosity requirements

Detectors

Complementarity of Up- and Downstream.

Upstream Polarimeter

- 1.8 km upstream of IP
- rather clean environment
- begnin beam cond.
- samples every bunch
- > stat. error 1% after few μ s
- reference for control of collision effects

Downstream Polarimeter

- > 140 m downstream of IP
- high backgrounds
- distrupted beam
- samples one bunch / train
- > stat. error 1% after \simeq 1 min
- access to depolarisation in collision

Combination

- without collisions: spin transport in Beam Delivery System and Extraction Line
- with collisions: depolarisation at IP

cross check each other!

[c.f. "Spin Dance" Exp., Phys. Rev. ST Accel. Beams 7 042802 (2004)]

Introduction	Polarimeters	Quartz Cherenkov detector prototype)	Conclusions

Compton Polarimeters

Detector R&D

Conclusions

ILC Polarimeter Detectors | J. List (DESY/CERN) | FCC-EPOL, Sep 22, 2022 | 8/20

Detector Requirements.

Magnetic Chicane...

- transforms energy spectrum into spatial distribution
- \succ behind chicane: \sim 20 cm wide
- detect Compton electrons over this area

Detector requirements:

- > Total ionising dose up to 100 Mrad / year
- read out signals of 1000-2000 Compton electrons (25-250 GeV) every bunch crossing
- either very linear response or "counting" electrons
- \succ alignment to \sim 100 µm and \sim 1 mrad
- suppression of background from low energetic particles

Detector Options.

Simple, robust, fast: Cherenkov detectors

- Cherenkov light emission proportional to number of electrons
- independent of electron energy (once relativistic)
- successfully used in best polarimeter sofar at SLC
- gas or quartz option for Cherenkov medium

Detector Options.

Simple, robust, fast: Cherenkov detectors

- Cherenkov light emission proportional to number of electrons
- independent of electron energy (once relativistic)
- successfully used in best polarimeter sofar at SLC
- gas or quartz option for Cherenkov medium

Take home message:

b detector performance required to meet overall error budget has been achieved in prototypes

> analysing power (i.e. asymmetry at $\mathcal{P} = 1$): 0.2%

 \Rightarrow e.g. alignment

 \blacktriangleright detector linearity: 0.1 % \Rightarrow photodetector calibration

some details on the next slides...

arimeters

Detectors

Quartz Cherenkov detector prototype

Conclusions

Gas Cherenkov detector.

Alignment: locate Compton edge in the spectrometer Segmented photodetectors: Tilt alignments via asymmetries

2-channel prototype tested at ELSA [JINST 7, P01019 (2012)] \Rightarrow tilt alignment of 0.1°, nearly fulfils alignment requirements

ILC Polarimeter Detectors | J. List (DESY/CERN) | FCC-EPOL, Sep 22, 2022 | 10/20

Gas Cherenkov detector: Alignment.

If the detector is tilted

- \succ beam path through the detector varies \Rightarrow different light path
- different light pattern on the photocathode
 - \Rightarrow alignment via spatial assymetries possible:

 \Rightarrow Reached a tilt alignment of 0.1°. [JINST 7, P01019 (2012)]

Polarimeters

Detectors

Conclusions

Calibration of detector non-linearity.

Goal: contribution to overall uncertainty < 0.1 %

PMTs have to be calibrated to non-linearity < 0.5 %.

$$\mathcal{P} \propto rac{N^+ - N^-}{N^+ + N^-}$$
: no absolute calibration needed.

 \rightarrow Differential calibration method using two LEDs:

ILC Polarimeter Detectors | J. List (DESY/CERN) | FCC-EPOL, Sep 22, 2022 | 12/20

Calibration source requirements.

Requirements on the LED driver:

- > wave length in UV range ($\lambda = 405$ nm)
- \succ applicable in detector design ightarrow small
- > short light pulses (< 10 ns)

coverage of the whole dynamic range of the expected signal

reproducable and stable light pulses

Detectors

Test of non-linearity correction.

Simulations: Corrections of non-linearities up to 4 % possible.

Detectors

Test of non-linearity correction.

Simulations: Corrections of non-linearities up to 4 % possible. Applied method to on of the photodetectors used in testbeam:

 \Rightarrow Reached non-linearity < 0.2 % in the expected dynamic range, in single polarimeter channels even smaller.

Detectors

Quartz Cherenkov detector - idea.

Alternative detector concept: quartz detector

- \blacktriangleright Higher refractive index \rightarrow higher photon yield
- > For enough photons per Compton e^- :
 - ightarrow calibrate gain directly from the data

Detectors

Quartz Cherenkov detector - simulation.

Compare asymmetry from

- true Compton electrons
- QCD mean (no peaks resolved)
 - peak counting

Peak-counting asymmetry robust against non-linearities!

Detectors

Quartz Cherenkov detector - prototype.

4-channel prototype operated at DESY II testbeam in 2014

- channels: quartz bars
 (5 mm x 18 mm x 100 mm)
- reasonable agreement with simulations (angular dependence, etc.)

ILC Polarimeter Detectors | J. List (DESY/CERN) | FCC-EPOL, Sep 22, 2022 | 17/20

Conclusions

Transverse Polarisation.

- requires to measure also vertical position, width of spectrum ~ mm \$\Rightarrow\$ Si pixel detector
- pioneered by G. Alexander, I. Ben Mordechai [https://inspirehep.net/literature/1475547]
- detailed simulation study incl. assessment of systematic uncertainties $\Rightarrow \delta P_Y / P_Y = 0.2\%$ achievable
- dominated by y position (assume 25 μ m) and tilt around z (0.1°)

Introduction	Polarimeters	Detectors	Quartz Cherenkov detector prototype)	Conclusions

Compton Polarimeters

Detector R&D

Conclusions

ILC Polarimeter Detectors | J. List (DESY/CERN) | FCC-EPOL, Sep 22, 2022 | 19/20

Detectors

Conclusions.

- > precision target for ILC Compton polarimeters $\delta P/P = 0.25\%$ on longitudinal polarisation at Compton IP
- requires detector linearity and analyzing power to be understood 2-3 times better than at SLC polarimeter
- Cherenkov detectors as baseline due to simplicity and robustness
- for detectors, translates to
 - \blacktriangleright alignment to \sim 100 μm and \sim 1 mrad
 - ▶ linearity \leq 0.5%
- two detector concepts incl. calibration system have been succesfully prototyped
- requirements have been met in testbeam
- work ready to resume after project decision

Detectors

More Details.

http://indico.desy.de/conferenceDisplay.py?confId=585

its Executive Summary

arXiv:0903.2959 [physics.acc-ph]

downstream polarimeter 6-magnet chicane

http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-12425.pdf

publication on beam energy and polarisation measurements

JINST 4 (2009) P10015, arXiv:0904.0122 [physics.ins-det]

publications on polarimeter detector R&D:

JINST 7 (2012) P01019, arXiv:1011.6314 [physics.ins-det]

JINST 10 (2015) 05, P05014, arXiv:1502.06955 [physics.ins-det]

JINST 11 (2016) 01, P01014 , arXiv:1509.03178 [physics.ins-det]

publication on BDS spin tracking

JINST 9 (2014) P07003, arXiv:1405.2156 [physics.acc-ph]

Backup Slides.

The International Linear Collider.

- > e^+e^- "Higgs factory" with $\sqrt{s} = 250 \text{ GeV}$, upgradable to up to 1 TeV
- > both beams polarised: $|P(e^{-})| = 80\%,$ $|P(e^{+})| = 30\%...60\%$
- integral part of physics programme, for Higgs and beyond, c.f. https://arxiv.org/ abs/1801.02840.
- construction under political consideration in Japan

Scaled vs Fixed Field Operation.

Effects of scaled field on measurement:

- ► acceptance: varies with E_{beam} ⇒ inhomogeneous quality of polarisation measurement
- > alignment: via Compton edge position w.r.t. main beam \Rightarrow effect on $\delta P / P$ doubles
- systematic deviations for large scale factors

not compatible with extreme precision requirements c.f. ILC-NOTE-2008-047

The Upstream Polarimeter in SB2009-Nov10 lattice.

The Upstream Polarimeter in SB2009-Nov10 lattice.

The Upstream Polarimeter in SB2009-Nov10 lattice.

distance Compton-IP to dump line ca 30 cm at 250 GeV

b down to ca 20 cm at lowest energies - enough?

[c.f. Baseline Technical Review Workshop 2011]

Vacuum Chamber in Chicane Region.

need special beam pipe through out whole chicane

- to allow for varying bending angle
- to guide laser in and out
- to let fan of Compton scattered electrons pass
- to extract Compton fan to detector

Attention: deflection of chicane the otherway round as on previous page!

Vacuum Chamber: Laser in / out.

- Laser enters chicane horizontally (far side from tune-up dump line!)
- final mirror / lens movable to adjust to e⁻ beam
- had been designed to some extent for TESLA (!) by N. Meyners, P. Schüler

Movable Laser Beam

Vacuum Chamber: Compton fan exit.

- need tapered exit window to avoid wake fields
- > again estimate from TESLA: $\simeq 10^{\circ}$ is fine (opinions?)
- need ~ 1.5 m for detector array, make it 2 m for shielding, accessability,...
- fine with SB2009-Nov10 lattice

ILC Polarimeter Detectors | J. List (DESY/CERN) | FCC-EPOL, Sep 22, 2022 | 27/20

Synchrotron Radiation.

Compton edge position nearly independent of beam energy

Gas Cherenkov detector: Alignment.

If the detector is tilted

- \succ beam path through the detector varies \Rightarrow different light path
- different light pattern on the photocathode
 - \Rightarrow alignment via spatial assymetries possible:

 \Rightarrow Reached a tilt alignment of 0.1°. [JINST 7, P01019 (2012)]

Spin tracking (more).

Downstream Polarimeter in SB2009-Nov10 lattice.

- still 4-magnet chicane should be upgraded to 6-magnet design as propsed in SLAC-PUB-12425
- necessary due to push-pull related changes to the extraction SC quadrupoles
- at the same time gives better shielding of magnets due to additional collimators
 - even more impact due to worse spent beam in low power configuration....

ILC Polarimeter Detectors | J. List (DESY/CERN) | FCC-EPOL, Sep 22, 2022 | 34/20

Beam Energy Spectrum with Collisions.

GuineaPig++, RDR nominal, $\sqrt{s} = 500 \,\text{GeV}$

How will this influence the measurement at the downstream polarimeter?

y vs E at DP IP.

Particle Tracking through SB2009-Nov10 lattice (M.Beckmann)

- > vertical extension of spent beam at DP IP $\mathcal{O}(cm)$
- "core" size still $\simeq 0.5\,{
 m mm}$
- sizable correlation of energy and position
- which part will the laser sample?
- expect dependence of measured polarisation on laser spot size and laser-beam alignment

Downstream Polarimeter: *y* vs *E*.

Polarisation for Physics.

Longitudinal polarisation $P_z = \frac{N_R - N_L}{N_R + N_L}$

with $N_{R,L}$: number of right-/left-handed particles in bunch

> SM & BSM: left- and righthanded particles couple differently

- polarised cross-sections are important observables carrying qualitatively new information!
- beam polarisation can suppress background / enhance signal
- ► wanted for physics: luminosity weighted average polarisation at the IP, $\langle P_z \rangle_{IP} = \frac{\int P_z(t)\mathcal{L}(t)dt}{\int \mathcal{L}(t)dt}$
- Note: most physics studies sofar assume this average is known exactly and independently for e⁻ and e⁺ beam.
- $P \equiv P_z$ in the following.

Polarised Cross-sections.

$$\begin{aligned} \sigma_{P_{e^-}P_{e^+}} &= \frac{1}{4} \quad \{ \quad (1+P_{e^-})(1+P_{e^+})\sigma_{RR} + (1-P_{e^-})(1-P_{e^+})\sigma_{LL} \\ &+ \quad (1+P_{e^-})(1-P_{e^+})\sigma_{RL} + (1-P_{e^-})(1+P_{e^+})\sigma_{LR} \} \end{aligned}$$

processes with *s*-channel Z/γ exchange only:

$$\sigma_{RR} = \sigma_{LL} = 0$$

$$4\sigma_{P_{e^-}P_{e^+}} = (1 - P_{e^-}P_{e^+})(\sigma_{LR} + \sigma_{RL})[1 - P_{eff}^-A_{LR}]$$

$$with P_{eff}^- = 1 - \frac{P_{e^-} - P_{e^+}}{1 - P_{e^-}P_{e^+}} \text{ and } A_{LR} = \frac{\sigma_{LR} - \sigma_{RL}}{\sigma_{LR} + \sigma_{RL}}$$

$$general case:$$

$$\sigma_{RR} \neq \sigma_{LL} \neq 0$$

$$4\sigma_{P_{e^{-}}P_{e^{+}}} = (1 + P_{e^{-}}P_{e^{+}})(\sigma_{LL} + \sigma_{RR})[1 + P_{eff}^{+}A_{LLRR}] + above$$

$$with P_{eff}^{+} = 1 + \frac{P_{e^{-}} + P_{e^{+}}}{1 + P_{e^{-}}P_{e^{+}}} and A_{LLRR} = \frac{\sigma_{LL} - \sigma_{RR}}{\sigma_{LL} + \sigma_{RR}}$$

Absolute cross-section measurements require:

$$\langle P_{e^{\pm}} \rangle_{IP} = \frac{\int P_{e^{\pm}}(t)\mathcal{L}(t)dt}{\int \mathcal{L}(t)dt}$$

$$\langle P_{e^{-}}P_{e^{+}} \rangle_{IP} = \frac{\int P_{e^{-}}(t)P_{e^{+}}(t)\mathcal{L}(t)dt}{\int \mathcal{L}(t)dt}$$

correlations between lumi and polarisation?!

Direct extraction from collision data

Correction to modified Blondel scheme.

$$P_+(e^{\pm}) = P^{\pm} + \epsilon^{\pm}$$
 and $P_-(e^{\pm}) = P^{\pm} - \epsilon^{\pm}$

