# LUXE ELECTRON, POSITRONS (AND **PHOTONS) DETECTORS**

# LOUIS HELARY (DESY)

# 2ND FCC POLARIZATION WORKSHOP, SEPTEMBER 22TH 2022

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES







#### **INTRODUCTION: SFQED PROCESSES AND PREDICTIONS**



$$\xi = \frac{e \varepsilon_L}{m_e \omega_L c} \propto I_{Laser} \qquad \chi \approx \gamma \frac{\varepsilon_L}{\varepsilon_{crit}} \propto \sqrt{I_{Laser}} E_{beam}$$

$$\xi \ll 1$$
:  $R_{e^+}$ 

$$\xi \gg 1: R_{e^+} \propto$$

#### Main Luxe scientific goals:

- Demonstrate SFQED by interacting high power laser (>40 TW) with high energy electron beams (16.5 GeV).
  - Measure positron rate as a function of laser intensity.
  - Measure Compton edges.
    - Position of edges different as function of  $\xi$  parameter.

(valid for low X values)

#### **EUROPEAN XFEL**



#### European XFEL:

- Running since 2017.
- Provide X-ray photons to 6 experiments.
  - Electron through undulator:
    - SASE (self-amplified spontaneous emission).
- Linear electron accelerator.
  - 2700 electron bunches at 10 Hz.
    - Aim to run at 16.5 GeV with 1.5e9 e-/bunch.
- Experiment will be located XS1 shaft in Orsdorfer Born.
  - Built for XFEL extension (beyond 2030).
- Experiment will have no impact on photon science,
  - Only use 1 of the 2700 bunches.



- Chirped Pulse Amplification (CPA) technique
- Ti:Sa laser with 800 nm wavelength (E=1.55 eV).
- Two phases:

LASER

- In phase 0 uses JETI40 (Jena custom 40 TW laser).
- In phase I will use commercial 350 TW laser.
- Laser parameters:
  - Repetition rate: 1Hz.
  - Pulse length 30 fs
- Laser characterisation quantities: energy, pulse length, spot size
  - $\leq 5\%$  uncertainty on Laser intensity, 1% shot-to-shot uncertainty







| Parameter                                               | Phase 0 | Phase 0 | F |
|---------------------------------------------------------|---------|---------|---|
| Laser power                                             | 40 TW   |         | 3 |
| Laser energy after compression [J]                      | 1.2     |         |   |
| Percentage of laser in focus [%]                        | 50      |         |   |
| Laser focal spot size w <sub>0</sub> [µm]               | >8      | >3      |   |
| Peak intensity [10 <sup>19</sup> W/cm2]                 | 1.9     | 13.3    |   |
| Peak intensity parameter ξ                              | 3.0     | 7.9     |   |
| Peak quantum parameter X<br>E <sub>beam</sub> =16.5 GeV | 0.56    | 1.5     |   |





#### LUXE IN SITU



## High power Laser







## DATA TAKING MODES



Mostly be talking about this mode!







#### ELECTRON SIDE: HIGH FLUX PARTICLE DETECTORS: (E-LASER: IP DETECTOR ELECTRON SIDE | GAMMA-LASER: BREM TARGET)

#### Mesure particles on electron side of spectrometer.

- Energy measurement come from position of hit after dipole spectrometer. Use two different systems Cherenkov detector and Scintillating screens
- with camera.
- Require good energy resolution: less than 2% in first edge region.
- Good linearity: less than 1% uncertainty on electron rate.
- Large dynamic range to cover  $\sim 10^3$  to  $10^8$  particles.
- Good background rejection









#### LECTRON SIDE: HIGH FLUX PARTICLE DETECTORS: SCINTILLATING SCREEN (E-LASER: IP DETECTOR ELECTRON SIDE | GAMMA-LASER: BREM TARGET)

- Scintillating screen with camera.
  - Used for instance at AWAKE at CERN
  - 310  $\mu$ m Tb-doped GaDOx (emitting 543 nm light, ~600  $\mu$ s decay time).
  - Use two types of precision optical cameras (4k: 4096 x 2160 pixels, 2k: 1920 x 1200 pixels).
  - Require good energy resolution: less than 2% in first edge region:
    - Excellent position resolution ( $\sigma 4k=50 \mu m$ ,  $\sigma 2k=140 \mu m$ )
    - Finer resolution for high-energy electron range (smaller separation in dipole)
  - Good linearity: less than 1% uncertainty on electron rate. Calibration light sources, and in-situ calibration
  - Large dynamic range to cover  $\sim 10^3$  to  $10^8$  particles.
  - Good background rejection:
    - Signal/background ~100
  - Cameras deported to ceiling on movable platform to reduce radiations exposure.
  - Energy reconstructed from luminosity of spot at given position on the screen.
    - Measure Compton Spectrum.







#### CTRON SIDE: HIGH FLUX PARTICLE DETECTORS: CHERENKOV (E-LASER: IP DETECTOR ELECTRON SIDE | GAMMA-LASER: BREM TARGET)

X

electrons

10

- Cherenkov detector:
  - Started development from ILC polarimetry prototype (See Jenny talk earlier).
    - Use metal straws (light guide) filled with air(low refractive index) to reduce light yield.
    - Spatially segmented detector: 2x 100 parallel straw channels
  - Require good energy resolution: less than 2% in first edge region.
    - Fine segmentation (( $\emptyset$ ~3mm)) to resolve Compton edges.
  - Good linearity: less than 1% uncertainty on electron rate.
    - Calibration light sources, and in-situ calibration.
  - Large dynamic range to cover  $\sim 10^3$  to  $10^7$  particles.
    - Plan to use dual readout system (SiPM and APD)
  - Good background rejection
    - Signal/background>1000
    - Not sensitive to electron <20 MeV.</li>
  - Energy spectrum estimated from light yield in ulleteach tube and unfolded to account for overlapping geometry.
    - Measure Compton Spectrum.





- Three detector technologies:
  - Backscattering calorimeter using lead glass blocks readout by PMTs placed before dump.
    - Measure integrated flux of photons produced in the experiment (~luminometer).
  - Gamma profiler (sapphire sensors)
    - Measure location of photon beam and profile.
      - If use polarized laser, expect angular spectrum of photons to depend on  $\xi$ .
  - Gamma spectrometer (see next slide).







Final  $\gamma$  dump

#### Calorimeter





#### PHOTON DETECTION SYSTEM - GAMMA SPECTROMETER (END OF BEAMLINE IN BOTH MODES)

#### Gamma spectrometer:

- Measure the spectrum and yield of electron-positron pairs generated from the gamma-ray beam through a converter target.
- Electrons positrons energy measured using LANEX screens located after dipole spectrometer magnet, and readout by amplified CCD camera.
- Deconvolution of the particle spectra using Bethe-Heitler cross-section to obtain photon energy spectrum!
  - Alternative method to measure Compton Spectrum.











#### **POSITRON SIDE: LOW FLUX DETECTOR: TRACKER AND CALORIMETERS (E-LASER:** IP DETECTOR POSITRON SIDE | GAMMA-LASER: IP DETECTOR BOTH SIDES)





- - Developed for ALICE tracker upgrade.
    - Pitch size: 27 x 29  $\mu$ m<sup>2</sup>=> spatial resolution ~5  $\mu$ m
  - Using tracking algorithm:
    - Background: <0.1 event per bunch crossing
    - Good energy reconstruction
- High granularity Calorimeter developed for ILC FCAL **Developed for ILC FCAL**
- - 20 layers of 3.5 mm thick tungsten plates
  - Silicon sensors (5x5 cm<sup>2</sup> pads, 320 µm thick)/
  - Readout via FLAME ASIC (developed for FCAL)
  - **Resolution:**

Energy -

- Independent measure of energy via position and calorimetry => N<sub>particle</sub>
  - Very important for high  $\xi$  runs where number of pairs can be very high!



## Tracker: Use four layers of ALPIDE silicon pixel sensors.

 $\frac{\sigma_E}{E} = \frac{19.3\%}{\sqrt{E/GeV}}, \text{ position: } \sigma_x = 0.78 \text{ mm}$ 





NTrue

## PUTTING EVERYTHING TOGETHER

- Breit-Wheeler process:
  - Estimated from low flux detectors (tracker, calorimeters) by measuring number of positrons created per laser shot.
- Non-linear Compton scattering:
  - Measure electrons energy distribution from Cherenkov detector and scintillating screen at IP.
  - Measure photons energy spectrum from gamma spectrometer.
  - Determine edge positions using Finite Impulse Response Filter technique.









- The LUXE experiment will allow to measure QED in uncharted regime! • Might expect some surprises there!
- Synergy experiment between particle physics and Laser physics!
  - Innovative development for Laser control system, and Laser diagnostics underway.
- LUXE CDR is now out, working on the TDR for 2022!
  - Still lot of works to do before the experiment can be running.



• Experiment planing to function on established technology to cope with challenging rate to measure!





#### **Conceptual Design Report for the LUXE Experiment**

H. Abramowicz<sup>1</sup>, U. Acosta<sup>2,3</sup>, M. Altarelli<sup>4</sup>, R. Aßmann<sup>5</sup>, Z. Bai<sup>6,7</sup>, T. Behnke<sup>5</sup>, Y. Benhammou<sup>1</sup>, T. Blackburn<sup>8</sup>, S. Boogert<sup>9</sup>, O. Borysov<sup>5</sup>, M. Borysova<sup>5,10</sup>, R. Brinkmann<sup>5</sup>, M. Bruschi<sup>11</sup>, F. Burkart<sup>5</sup>, K. Büßer<sup>5</sup>, N. Cavanagh<sup>12</sup>, O. Davidi<sup>6</sup>, W. Decking<sup>5</sup>, U. Dosselli<sup>13</sup>, N. Elkina<sup>3</sup>, A. Fedotov<sup>14</sup>, M. Firlej<sup>15</sup>, T. Fiutowski<sup>15</sup>, K. Fleck<sup>12</sup>, M. Gostkin<sup>16</sup>, C. Grojean<sup>\*5</sup>, J. Hallford<sup>5,17</sup>, H. Harsh<sup>18,19</sup>, A. Hartin<sup>17</sup> B. Heinemann<sup>†5,20</sup>, T. Heinzl<sup>21</sup>, L. Helary<sup>5</sup>, M. Hoffmann<sup>5,20</sup>, S. Huang<sup>1</sup>, X. Huang<sup>5,15,20</sup>, M. Idzik<sup>15</sup>, A. Ilderton<sup>21</sup>, R. Jacobs<sup>5</sup>, B. Kämpfer<sup>2,3</sup>, B. King<sup>21</sup>, H. Lahno<sup>10</sup>, A. Levanon<sup>1</sup>, A. Levy<sup>1</sup>, I. Levy<sup>22</sup>, J. List<sup>5</sup>, W. Lohmann<sup>‡5</sup>, T. Ma<sup>23</sup>, A.J. Macleod<sup>21</sup>, V. Malka<sup>6</sup>, F. Meloni<sup>5</sup>, A. Mironov<sup>14</sup>, M. Morandin<sup>13</sup>, J. Moron<sup>15</sup>, E. Negodin<sup>5</sup>, G. Perez<sup>6</sup>, I. Pomerantz<sup>1</sup>, R.Pöschl<sup>24</sup>, R. Prasad<sup>5</sup>, F. Quéré<sup>25</sup>, A. Ringwald<sup>5</sup>, C. Rödel<sup>26</sup>, S. Rykovanov<sup>27</sup>, F. Salgado<sup>18,19</sup>, A. Santra<sup>6</sup>, G. Sarri<sup>12</sup>, A. Sävert<sup>18</sup>, A. Sbrizzi<sup>§28</sup>, S. Schmitt<sup>5</sup>, U. Schramm<sup>2,3</sup>, S. Schuwalow<sup>5</sup>, D. Seipt<sup>18</sup>, L. Shaimerdenova<sup>29</sup>, M. Shchedrolosiev<sup>5</sup>, M. Skakunov<sup>29</sup>, Y. Soreq<sup>23</sup>, M. Streeter<sup>12</sup>, K. Swientek<sup>15</sup>, N. Tal Hod<sup>6</sup>, S. Tang<sup>21</sup>, T. Teter<sup>18,19</sup>, D. Thoden<sup>5</sup>, A.I. Titov<sup>16</sup>, O. Tolbanov<sup>29</sup>, G. Torgrimsson<sup>3</sup>, A. Tyazhev<sup>29</sup>, M. Wing<sup>5,17</sup>, M. Zanetti<sup>13</sup>, A. Zarubin<sup>29</sup>, K. Zeil<sup>3</sup>, M. Zepf<sup>18,19</sup>, and A. Zhemchukov<sup>16</sup>

# BACKUP

## More informations:

CDR, published by European Physics Journal ST: Eur.Phys.J.ST 230 (2021) 11, 2445-2560

16

LUXE: https://luxe.desy.de/

## INTRODUCTION: QED, VACUUM AND STRONG FIELD QED

- QED: one of the most well-tested physics theory!
  - Calculation in QED based on perturbative theory of  $\alpha_{EM}$ .
    - Prediction electron (g-2) precision better than 1 part in a trillion!
- Vacuum:
  - Virtual particles that can be charged and couple to fields.
  - Quantum fields: average is zero, but variance is not!
  - Physical particle travel in vacuum affected by interactions with these.
- If one apply a strong electromagnetic field on a vacuum:
  - $W_{\text{field}} < 2 m_{\text{e}}$



- QED becomes non perturbative above Schwinger-limit → Strong field QED (SFQED)!
- Experimental consequences:
  - Field-induced ("Breit-Wheeler") Pair Creation
  - Modified Compton Spectrum.
- Non-perturbative and SFQED never been reached in a clean environment, accessible by LUXE!
  - Experimentally reached by colliding highly boosted electrons with high-intensity laser!









17

$$\varepsilon_{crit} = \frac{m_e^2 c^3}{\hbar e} \simeq 1.3 \cdot 10^{18} \,\mathrm{V/m}$$

## **INTRODUCTION: SFQED STATE OF THE ART**

- Historically SFQED studied first in 1990's at SLAC E144 (experiment)
  - 1TW laser with I<sub>Laser</sub>=10<sup>18</sup> W/cm<sup>2</sup>
  - e-beam: 46.6 GeV
  - reached  $\xi < 0.4, \chi \le 0.25$
  - observed multi-photon interaction:  $e^- + n\gamma_L \rightarrow e^- e^+ e^-$  process
  - observed start of the  $\xi^{2n}$  power law, but not departure
- Nowadays multiple experiments proposed worldwide to observe SFQED:
  - Accelerator based: SLAC-E320 (US), LUXE (DE)
  - Laser plasma wakefield accelerator: Astra Gemini (UK), ELI-NP (RO)
  - Others: crystal based experiment, heavy ions...
- Luxe allow to measure with precision large part of  $\xi$  vs X phase space.
  - Observation of non perturbative regime in clean vacuum environment.
    - Only experiment proposed to directly explore photon-laser interactions.

#### Main Luxe scientific goals:

- Demonstrate SFQED
  - Measure electron rate as a function of laser intensity.
  - Measure Compton edges.
    - Position of edges different as function of  $\xi$  parameter.
- Study BSM physics.





| , 3μι | 2 |
|-------|---|
| IP -  | 5 |
|       |   |
| 1i    |   |
|       |   |





## **RATES PER BUNCH CROSSING**



19

#### Electron-laser:

#### Gamma-laser: