

LINAC4 Laser Emittance Meter

FCC EPOL WORKSHOP

Aurelie Goldblatt SY-BI-PM

22.09.2022

LINAC4 Laser Emittance meter

LINAC4 accelerates H^- ions up to 160MeV

Conversion into protons at injection of the booster synchrotron (PSB)

e⁻ stripping by photodetachment

Scan of focused beam through H^- beam

- e⁻ bent into electron multiplier
 → profile measurement
- *H*⁰ measured on diamond strip detector
 → emittance and profile measurement

Emittance Diagnostics

- 2 E-meters in LINAC4 •
- pCVD diamond detectors ٠
- 4 sensors covering H & V planes separately

Diamond channel raw data

Phase space ellipse

Why pCVD Diamond ?

- **Sensitivity:** multiple background sources
 - \rightarrow high signal to noise ratio needed
- Time resolution: enough to detect pulses 10-100ns
- Excellent radiation hardness
- Ultra High vacuum compatible
- High dynamic range: used from 3MeV to 160MeV
- Big detector size

Diamond microscopy

Other systems reviewed: SEM, scintillating screens, Multi Channel Plates, Gaz Electron Multipliers, semiconductors

 \rightarrow All show at least one weakness

Collected Charge @ 160MeV

- e- of H⁰ stripped in the diamond surface \rightarrow proton ionisation
- H^0 atoms fully traverse 500um diamond \rightarrow no piled up charge
- Charge collection efficiency (CCE) of 36%
- E loss inside diamond simulated with SRIM : 820keV/H⁰
- For beam current of 64,5mA*, ~1 $^{\rm e}5$ H⁰ (laser @ beam center) \rightarrow detector output ~0.2V

*40 mA beam average current as specified in [GV+06] scaled with 1/0.62 chopping ratio

Radiation Damage

Excellent radiation hardness but damage due to atomic displacement when exposed to high energy particles

 \rightarrow Critical for profile measurement (acceptable degradation 10%)

Fluences by radiation type :

- Laser stripped H⁰: 2,9 · 10⁶ H⁰/L4macropulse* · mm²
- Direct H⁰ background: 4,4 · 10⁵ H⁰/L4macropulse · mm²
- Ambient radiation 9,1 \cdot 10⁶ n⁰/day \cdot mm²

Damages to:

- Diamond bulk \rightarrow dominant effect
- Electrode-diamond interface
- Polarisation building up due to implanted / trapped charges
- Highest radiation damage in the detector's central mm2
- Estimated detectors life time with 1 emittance scan per hour : 9 years
- * Calculated for LINAC4 macropulse of 400us

Radiation damage measured as relative Displacement Per Atom (DPA)

Diamond Sensor Design & Testing

• 28 channels, 0.34mm strips \rightarrow less than 10% charge sharing

 $(\rightarrow \text{ long drift space needed to increase angular resolution})$

- Detector sizes: 32x10mm or 20x20mm
- Ceramic PCB, thermoplastic adhesive film
 - \rightarrow UHV compatible
- Tests show really good channels homogeneity & linearity

Laser E-meter Commissioning

- Perturbation common to all diamond channels
- ~ 50kHz (2MHz on raw data)
- *H*⁰ beam itself contains multiple frequencies
- For now: use of 50kHz digital notch filter

Measurement from 28th June 2022

• Next winter stop: review of cables shielding

- T. Hofmann "Development of a Laser-based Emittance Monitor for Negative Hydrogen Beams", PhD thesis, University of Erlan-gen-Nuremberg, Germany, 2017
- T.Hofmann, et al., "Experimental results of the laserwire emittance scanner for LINAC4 at CERN", in Nuclear Instruments & Methods in Physic Research A (2016)
- Eva Calco Giraldo, et al., "The Diamond Beam Loss Monitoring System at CERN LHC and SPS" in Proceedings of IBIC 2022, Cracow, Poland
- Federico Roncarolo, et al., "Fast Spill Monitor Studies for the SPS Fixed Target Beams" in Proceedings of IBIC 2022, Cracow, Poland
- "The Element Six CVD Diamond Handbook" :https://www.e6.com/en/knowledge-base/brochures
- https://wikis.cern.ch/display/BEBI/L4+Laser+EM

home.cern