

Timepix3 based Detectors

FCC EPOL Workshop, 22nd September 2022

James Storey (CERN SY-BI-XEI)

Experimental Areas, Electron Beams & Ionisation Profile Monitors (XEI) Section, Beam Instrumentation (BI) Group, Accelerator Systems (SY) Department, CERN.

Outline

- 1. Brief introduction to Timepix3 & 4 Hybrid Pixel Detectors (HPD's)
- 2. Example applications of particle detection with Timepix3 HPD for Beam Instrumentation at CERN:
 - Rest gas ionisation profile monitor (electron detection)
 - Beam Gas Vertex & Fast Beam Loss Monitor (high energy charged particle detection)

Hybrid pixel detector

Hybrid Pixel Detector (HPD): Pixelated sensor bump bonded to a pixelated readout chip.

Sensor: 2-dimensional array of PN-diodes processed (for example) in high-resistivity silicon. **Readout chip:** array of readout channels designed in CMOS technology.

3

Timepix3 response to charge

Timepix3 specifications

General Purpose particle tracking	
IBM 130nm	
(h⁺/e⁻) with 55 x 55 μm²	
256 x 256 (2x4 superpixels)	
 Time (TOA) AND Charge (TOT) Time (TOA) PC & integral charge (iTOT) 	
 Data driven (Shutter-less) Frame-based (Shutter) 	
1	
> 500 e-	
1.562 ns	
~2 keV FWHM (Si)	
<1.5W @1.5 V	
3 sides buttable and minimum periphery	
YES. With 1.2mm periphery	
Data-Driven: ~0.43 x 10 ⁶ hits/mm ² /s Frame-based: 826 x 10 ⁶ hits/mm ² /s	
1 to 8 SLVS DDR @640Mbps each	

Slide from Xavier Llopart - EP Detector Seminar on 11th Feb. 2022 (https://indico.cern.ch/event/1121147/)

Applications of Timepix HPD's

High Energy Physics (HEP):

- Charged particle tracking (e.g. Telescope, TPC, etc.)
- Neutron detection (e.g. Convertor + MCP + Timepix3)
- Electron detection
 - Beam instrumentation
- X-ray detection

Outside HEP:

- Dosimetry
- Time-of-flight mass spectroscopy
- Electron microscope
- Compton cameras
- Education

Space dosimetry - Timepix on International Space Station (Courtesy of NASA, photo ref. no. iss036e006175)

Spectral CT X-ray imagine (Courtesy of MARS Bioimaging Ltd.)

Example Timepix3 application: 3D particle tracking

"3D track reconstruction capability of a silicon hybrid active pixel detector," Bergmann, B. et al. Eur. Phys. J. C (2017)

- Timepix3 with 500um p-on-n silicon sensor irradiated by 120 GeV/c pion beam at 60 degree.
- Depth (z-axis) information inferred from Time-of-Arrival information \rightarrow **3D particle tracking**

Timepix4 specification

			Timepix3 (2013)	Timepix4 (2019)
Technology			130nm – 8 metal	65nm – 10 metal
Pixel Size			55 x 55 μm	55 x 55 μm
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448 3.5x
Sensitive area			1.98 cm ²	6.94 cm ²
Readout Modes		Mode	тот	and TOA
	Data driven (Tracking)	Event Packet	48-bit	64-bit 33%
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel 8x
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)
		Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm ² /s 6x
TOT energy resolution		ion	< 2KeV	< 1Kev 2x
Time resolution			1.56ns	195.3125ps 8x
Readout bandwidth		n	≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)
Target global minimum threshold		num threshold	<500 e ⁻	<500 e ⁻

4-side buttable

Timepix4 HPD's can be combined to form (infinitely) large detector areas

Slide from Xavier Llopart - EP Detector Seminar on 11th Feb. 2022 (https://indico.cern.ch/event/1121147/)

Examples of 1) electron & 2) high energy charged particle detection with Timepix3/4 based detectors for Beam Instrumentation

1. Example of electron detection with Timepix3 HPD

Instrument overview

Measures beam profile in horizontal plane (x, s) – second instrument design for vertical plane measurement

Instrument overview

Ionisation electron detector based on Timepix3 HPD

Ionisation electron detector requirements

- Detect 10keV electrons (penetration depth in silicon = 1.5µm)
- Detect each electron with time resolution < 25ns & spatial resolution < 100µm
- Meet outgassing requirements for installation in the UHV of the PS beam pipe
- Operate during the acceleration cycle

Sensor

- Non-metalized, p-in-n, 100m deep
- 256 x 256 array of PN-diodes
- Pixel size = 55um x 55um
- Sensor area = 14mm x 14mm

Timepix3 readout chip

Each sensor pixel is connected to an individual readout channel (pixel)

Ionisation electron detector – Prototype

Ceramic carrier board

- 2 metal layers, Al₂O₃ substrate
- 4 x Timepix3 HPD's attached with Staystick 672 and wire bonded
- Sensor bias wire glued (Mk.1) / wire bonded to Al pad (Mk.2)

Flexible cables

- Connects ceramic board to electrical feedthroughs on vacuum flange
- Two metals layers with a Liquid Crystal Polymer (LCP) substrate

Qualified for installation in the PS accelerator beam pipe

Installation in the CERN PS

0.2T self-compensating triplet dipole magnet (Dominique Bodart TE-MSC) & instrument vacuum chamber

Instrument prior to installation

Installation at PS SS82

Vacuum pump down:

- 1 x 10⁻⁸ mbar after 24 hours
- 2 x 10⁻¹⁰ mbar steady state

Selecting ionisation electrons

Signal – ionisation electrons:

- Mostly single pixel events
- Energy < 10keV

Background – shower of secondary particles due to beam loss:

- Multi-pixel events
- Energy > 26keV

Signal selection:

- Cluster finding to identify particle events
- Size & energy criteria to select ionisation electrons

Preparation of LHC beam in the PS

- Timepix3 data-driven readout enables "live" display of the beam throughout the cycle
- 1.5 seconds in real time: slowed down here for viewing purpose
- Each frame is 10 ms of data
- Not filtered: *background particles are interesting to look at!*
- LHC type beam, single bunch $(I = 20x10^{10} p)$

Beam profile measurement

Single bunch measurements

Single bunch in the PS at the start of beam commissioning

Continuous & non-destructive measurement of of beam size and position throughout the PS cycle (1.2s)

2. Examples of high energy charged particle detection

Beam Gas Vertex (BGV) profile monitor for HL-LHC

BGV consists of: 1) Gas target & 2) Forward tracking detector

Beam profile inferred from density of the reconstructed primary vertices of the inelastic beam gas interactions.

BGV - Tracking detector based on Timepix4 Hybrid Pixel Detectors

Tracking detector – modules + support (Collaboration with Oxford University)

Tracking detector – readout + processing (CERN)

Architecture based on BIPXL readout developed for PS BGI

Fast Beam Loss Monitor (BLM) based on Timepix3

Operational need: Fast beam loss monitor for rapid deployment in the LHC

Timepix3-BLM = Timepix3 HPD + BIPXL readout systems (minimal amount of development)

Beam loss in the PS at injection as seen by PS BGI

Radiation tolerant Fast BLM based on Timepix3 with BIPXL readout

BLMPX @TI18: Counts vs. ATLAS luminosity

Measurement for FASER at TI18 – 2 hour installation

Timepix (& Medipix) family of Hybrid Pixel Detectors (HPD's) are an incredibly versatile tool for charged & neutral particle detection across a wide range of energies.

Diverse and well established community of users.

Very happy to discuss possible applications in the context of FCC EPOL...

