

IR Optics design for the FCC-ee s-channel monochromatization scheme

H. Jiang A. Faus-Golfe, F. Zimmermann, K. Oide, Z. Zhang

21 September, 2022

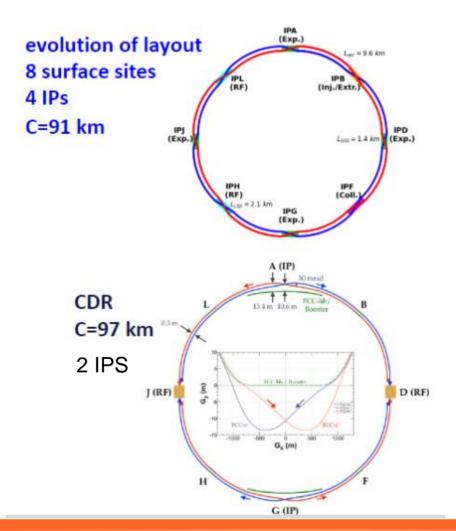
IJCLAB IN2P3-CNRS

- Introductions
- The trade-off between energy spread and luminosity
- The standard FCC-ee IR Optics design
- The IR optics for the monochromatization scheme
- The continuing optimization of the mono-scheme

Introduction: FCC-ee collider

FCC-ee modes:

- The FCC-ee standard modes:
 - Four different energy operation modes:


Z, WW,H(ZH) and ttbar

- The optional fifth mode: s-channel Higgs production mode
 - The measurement of the electron Yukawa coupling, in dedicated runs at 125 GeV with center-of-mass (CM) energy spread(5-10 MeV). But the natural collision energy spread, due to the synchrotron radiation, is about 50MeV.

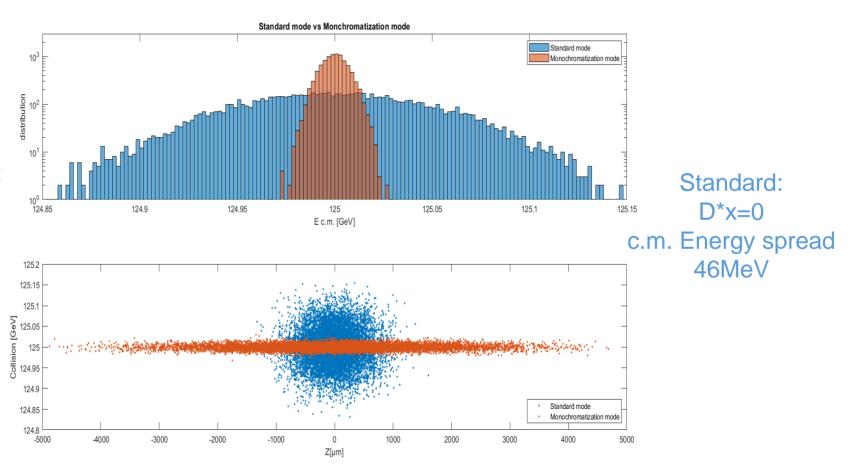
Requirements:

 reduce the CM energy spread from 50MeV to 5MeV, which is comparable to the resonant width of the standard model Higgs Boson itself (4.2MeV) [1]

[1]Abada, A., Abbrescia, M., AbdusSalam, S.S. et al. FCC-ee: The Lepton Collider.

FCC-ee Parameters (including s channel mode)

FCCWEEK22, K. Oide, D. Shatilov


Parameter [4 IPs, 91.1 km, T _{rev} =0.3 ms]	S-Channel ^[1]	Z	ww	H (ZH)	ttbar
beam energy [GeV]	62.5	45	80	120	182.5
beam current [mA]	395	1280	135	26.7	5.0
number bunches/beam	13420	10000	880	248	40
bunch intensity [10 ¹¹]	0.6	2.43	2.91	2.04	2.37
SR energy loss / turn [GeV]	0.126	0.0391	0.37	1.869	10.0
total RF voltage 400 / 800 MHz [GV]		0.120 / 0	1.0 / 0	2.08 / 0	2.5 / 8.8
long. damping time [turns]		1170	216	64.5	18.5
horizontal beta* [m]	0.09	0.1	0.2	0.3	1
vertical beta* [mm]	1	0.8	1	1	1.6
horizontal geometric emittance [nm]	0.51	0.71	2.17	0.64	1.49
vertical geom. emittance [pm]	2	1.42	4.34	1.29	2.98
horizontal rms IP spot size [μm]	15	8	21	14	39
vertical rms IP spot size [nm]	45	34	66	36	69
beam-beam parameter $\xi_x I \xi_y$		0.004 / 0.159	0.011 / 0.111	0.0187 / 0.129	0.093 / 0.140
rms bunch length with SR / BS [mm]		4.38 / 14.5	3.55 / 8.01	3.34 / 6.0	1.95 / 2.75
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	76	182	19.4	7.26	1.25
total integrated luminosity / year [ab ⁻¹ /yr]	36	87	9.3	3.5	0.65
beam lifetime rad Bhabha + BS [min]		19	18	6	9

The transverse monochromatic scheme

• The transverse monochromatic scheme(Guinea-Pig simulation results)

Monochromatization:
D*x=±0.2m
c.m. Energy spread
6.9MeV

Example IP parameters for monochromatization scenario for FCC-ee

• The example IP parameters and performance for typical monochromatization scenario for FCC- ee $D_x^*=\pm 0.1m$

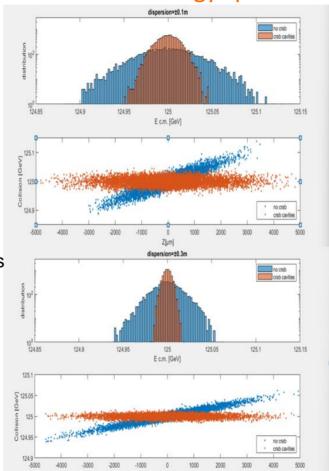
Parameter		Units
CM Energy, W	125	[GeV]
Horizontal, vertical RMS emittances with (without) beamstrahlung, ε_{XV}	2.5 (0.51), 0.002	[nm]
Relative RMS momentum deviation, σ_{δ}	0.052	%
RMS bunch length, σ_z	3.3	[mm]
Horizontal dispersion at IP, D_X^*	0.105	[m]
Beta functions at the IP, $\beta^*_{x,y}$	90, 1	[mm]
RMS beam size at the IP, σ_{xy}^{*}	55, 0.045	[µm]
Full crossing angle, θ_c	30	[mrad]
Vertical beam-beam tune shift, ξ_y	0.106	
Total beam current, I_{ε}	395	[mA]
Bunch population, No	6.0 × 10 ¹⁰	
Bunches per beam, ns	13420	
Luminosity (without crab cavities) per IP, L	$2.6 (2.3) \times 10^{35}$	[cm ⁻² s ⁻¹]
RMS CM energy spread (without crab cavities), σw	13(25)	[MeV]

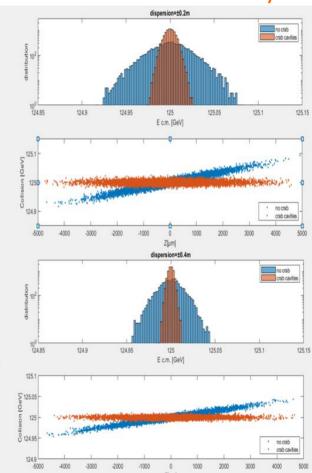
The monochromatization factor:

$$\lambda = \sqrt{1 + \frac{D_x^{*2} \sigma_\varepsilon^2}{\epsilon_x \beta_x^*}}$$

The correlation D*x and Mono-factor						
$D_{\mathcal{X}}^{*}$	± 0.1 m	± 0.2 m	± 0.3 m	± 0.4 m		
λ	3.6	7.0	10.4	13.9		

The trade-off between luminosity and center-of-mass energy spread

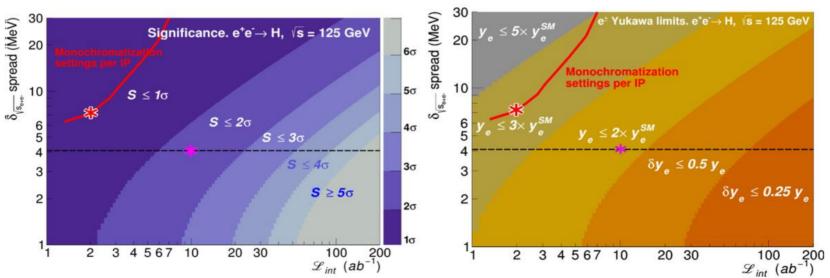

• The monochromatic scheme reduces the c.m. energy spread but decreases the luminosity.


Guinea-pig simulations:

The relationship between luminosity and c.m. energy spread for different $D_x^* = 0.1, 0.2, 0.3, 0.4m$

The initial beam distribution:

Generated by mathematica with parameters shown in FCC-ee parameters table and different D_x^*

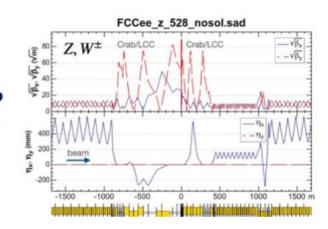


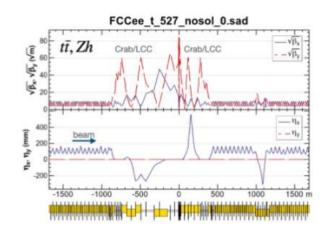
The trade-off between luminosity and center-of-mass energy spread

The relationship between dispersion and luminosity and c.m. energy spread

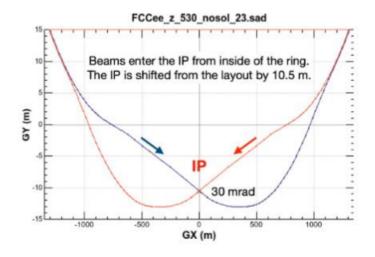
<u> </u>				
Dispersion	0.1m	0.2m	0.3m	0.4m
RMS energy spread with crab cavities	12.8 MeV	6.9 MeV	4.6MeV	3.6 MeV
RMS energy spread without crab cavities	30.6 MeV	21.1MeV	14.8MeV	11.6MeV
Luminosity(10 ³⁵ cm ⁻² s ⁻¹)	2.6	1.25	0.84	0.63
Monochromatization factor	3.3	6.1	9.1	12

Significance(left) and associated upper limits contours on the electron Yukawa ye. (Right) in the c.m. energy spread vs. integrated luminosity^[1]

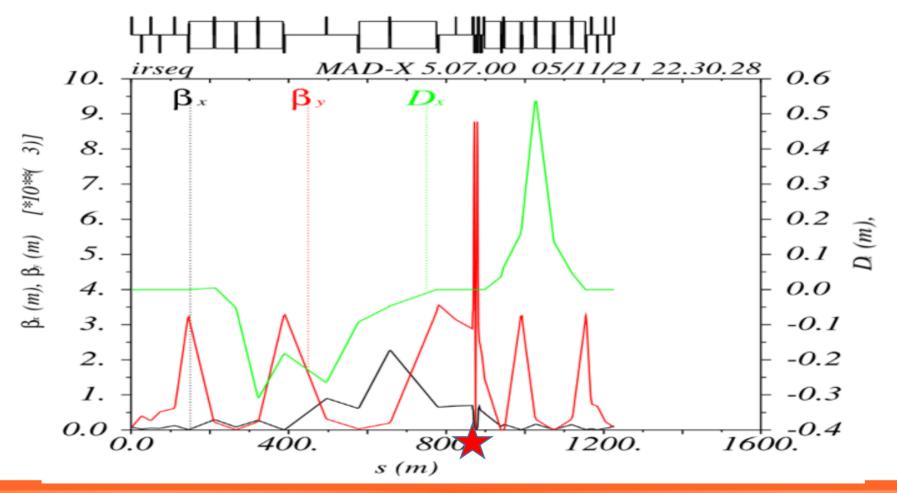



FCC-ee Standard IR optics design

Driven by synchrotron radiation:

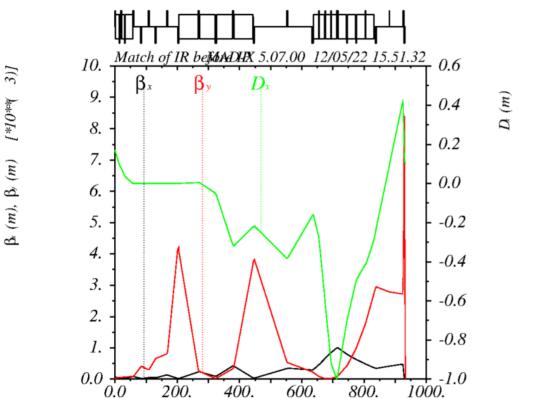

E_{critical} <100 keV from 450 m from the IP at ttbar (detector requirement from LEP experience)

→ Very Asymmetric IR optics

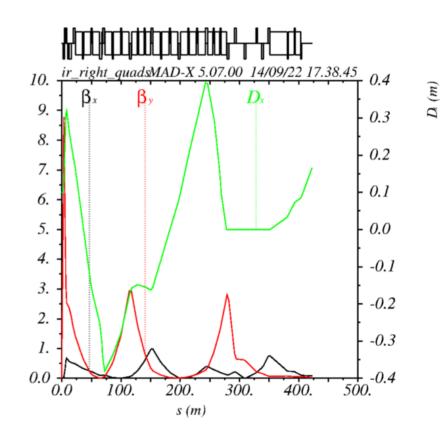

FCC-ee IR geometry Crossing angle:30mrad

The baseline S-channel standard IR Optics

• The asymmetric Standard mode IR Optics (from dispersion-free to dispersion-free region)



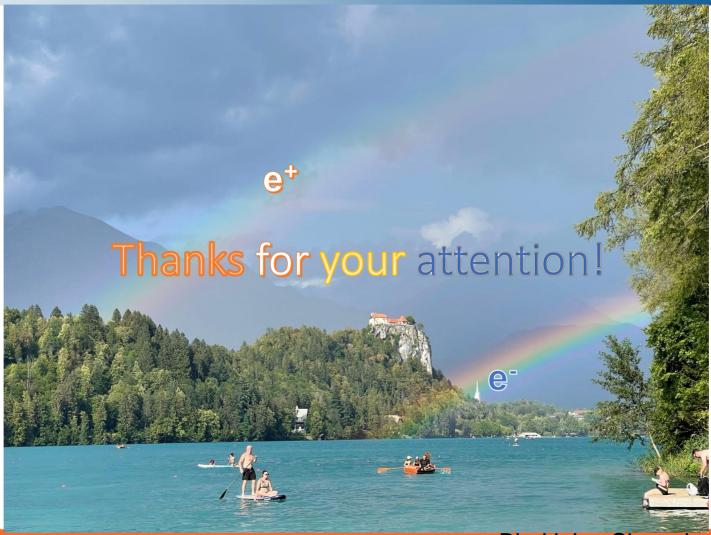
The Preliminary IR Optics for transversal mono-schemes


Before the Interaction Point:

 $D*x = \pm 0.1m$

After the Interaction Point:

s(m)



Next steps

- D_x* scanning and limits
- Redesign and Correction of local chromaticity correction (LCC system)
- Beam dynamic aperture (DA) analysis
- Beam-beam effects

