Spin Studies with BMAD for a **SuperKEKB Polarization Upgrade**

2022.09.22

Yuhao Peng

- Physics Motivation
- Spin rotator conceptual design overview
- Simulation tool: BMAD
- Simulation procedure and result
- Injection Linac layout
- Polarization studies in the Linac

Outline

Design a pair of spin rotators for SuperKEKB High Energy Ring (electron ring), to polarize the spin of the electron beam in the longitudinal direction at the interaction point (IP)

With

$$A_{LR}^{f} = \frac{\sigma_{L} - \sigma_{R}}{\sigma_{L} + \sigma_{R}} = \frac{sG_{F}}{\sqrt{2\pi\alpha}Q_{f}} g_{A}^{e} g_{V}^{f} \langle Pol \rangle \propto T_{3}^{f} - 2Q_{f} \sin\theta_{W}$$
$$\langle Pol \rangle = \frac{1}{2} \left[\left(\frac{N_{eR} - N_{eL}}{N_{eR} + N_{eL}} \right)_{\mathsf{R}} - \left(\frac{N_{eR} - N_{eL}}{N_{eR} + N_{eL}} \right)_{\mathsf{L}} \right]$$

See more details in Tuesday's talk: "Polarized beams proposal for SuperKEKB" by M. Roney

Physics Motivation

 Study of asymmetry between the identical processes with different electron beam handedness, which provides precision electroweak measurements

Overview of the concept for a potential polarization upgrade

- Inject transverse polarized electron beam into the High Energy Ring (HER)
- longitudinal direction at the IP and back to transverse after IP

A pair of spin rotators installed on both sides of the IP to rotate the spin to the University of Victoria

4

Follows Uli Wienands's (Argonne National Laboratory) idea and direction:

- to preserve the machine geometry
- the x-y plane coupling caused by solenoids
- Original machine can be recovered by turning off sol-quad field

 replace some existing ring dipoles on both sides of the IP with the dipolesolenoid combined function magnets and keep the original dipole strength

Install 6 skew-quadruple on top of each rotator section to compensate for

Constraints of the Design

Transparency: Need to maintain the original **beam dynamics**, make the spin rotator transparent to the ring as much as possible (the spin rotator is for the polarization purpose only)

- Physical constraints: All new magnets must be manufacturable and installable
 - Solenoid strength can not exceed 5 T
 - Skew-quad can not exceed 30 T/m (~ 3T at the coil)

Simulation Tool

- **BMAD** is an open-source software library created/maintained by David Sagan at Cornell University for simulating charged particles and X-rays
- Étienne Forest's "Polymorphic Tracking Code" (PTC) is incorporated into it
- Use Tao interface to BMAD to perform the optimization
- Optimization Algorithm: LMDIF is to minimize the sum of the squares of nonlinear functions by a modification of the Levenberg-Marquardt algorithm
- The BMAD lattice file of the HER with Crab Waist is translated from SAD, which is provided by Demin Zhou (KEK)

Validation of transverse spin lifetime in the HER

polarization vs turn

- Tracking 100 particles for 20000 turns in the HER with BMAD
- Based on this study, the estimated polarization lifetime > 10 hours

Procedure of the Rot Design

Identify which dipoles (use 4 "B2E" dipoles) to replace with the spin rotator (dipole-solenoid-quadrupole combined function magnets)

Build the rotator magnet model with BMAD

Spin polarization :

vertical polarization after IP

Transparency:

- Fit skew-quads to decouple the x-y plane
- •Rematch the optics(Twiss parameters and dispersion functions) by adjusting existing ring quads near the rotator region
- Maintain Tune value Q
- Match the first order chromaticity by tuning existing ring sextupoles

•Fit solenoids to longitudinally polarize the electron beam at the IP, and restore

Rotator Modelling with BMAD

solenoid-quadrupole (straight element)

- BMAD has solenoid-quadrupole(Sol Quad) but does not have dipole-solenoid-quadrupole
- Following David Sagan's suggestion, use hkick(horizontal kick) to simulate the dipole(Sbend) and patches to correct the reference orbit

Rotator modelling requires a combination of dipole (curved element) and

Modelling dipoles with Hkicks in BMAD

- Hkick strength is set to be the same as the dipole
- Initially sliced into 6 pieces to match the number of skew-quads
- Use patches to shift the reference orbit(x,x',y,y') at the exit of each piece
- Increase the number of slices to obtain a better model of the dipole

Comparison of geometry between the B2E and the Hkick after fixing the reference orbit with patch

Comparison of orbit and Optical functions

The sawtooth shape orbit excursion is not physical, it's an artificial effect due to using the patch elements

Hkick(6-piece sliced)

University

Slice Model

Slice Model(96-pieces) Stand-alone Model(6-pieces) In order to reduce the non-physical orbit excursion, each piece of the hkick University is further sliced into 16 pieces, 96 in total

Validating Hkick modelling of dipoles

hkicks(no solenoid-quadrupole) in the full HER lattice

- Check if the floor coordinate is the same as the original (global geometry)
- Check if the orbit, optical functions, and ring parameters... are the same as the original

Replace 4 "B2E" (where the rotator magnets will be installed) with

Comparison of original HER with version having Hkick modelling of the 4 B2E dipoles

Beta

Dispersion

Orbit

Rotator Structure

- Left Rotator (L-Rot) rotates horizontal plane
- Right Rotator (R-Rot) rotate direction
- 4 B2E dipoles shown above magnets

• Left Rotator (L-Rot) rotates the spin from the vertical to the

• Right Rotator (R-Rot) rotates the spin back to the vertical

4 B2E dipoles shown above to be replaced with the spin rotator

Open-geometry Optimization

Replace B2E with Rotator lattice elements, and perform the elements, and repeat the same procedure for the R-Rot

- Fit the solenoids to match the spin
- Fit the skew-quads to perform decoupling
- Adjust the ring quads near the rotator region to achieve the optical rematch

- optimization in the lattice segment containing the L-Rot and nearby

Optimization Result Solenoid strength, below 5T

	Solenoid	Field (T)
L-Rot	B2EALSQ	-4.8431
	B2EBLSQ	-2.5774
R-Rot	B2EARSQ	-3.6084
	B2EBRSQ	-3.9420

- Maximum skew-quad strength is ~20 T/m, which is below the physical limit 30 T/m, see appendix
- Maximum Ring quad is ~ 14 T/m, which is achievable, see appendix

Comparison at L-Rot tuning area after completing the optical rematch

Comparison at R-Rot tuning area after completing the optical rematch

Full lattice Comparison with L/R-Rot installed in the ring

Ring Parameters Comparison before performing the closed-geometry optimization

Machine parameter	Original Ring	Rot Installed
Tune Q_x	45.530994	45.777566
Tune Q_y	43.580709	44.446774
Chromaticity ξ_x	1.593508	-0.725173
Chromaticity ξ_y	1.622865	1.879936
Damping partition J_x	1.000064	0.984214
Damping partition J_y	1.000002	1.005265
Emittance ε_x	4.44061×10^{-9}	4.88965×10^{-9}
Emittance ε_y	5.65367×10^{-13}	4.01654×10^{-12}

Tune and Chromaticity needs to be rematched

times smaller than the current design of 12.9 pm

• Although the vertical emittance is higher than the original, it is 3 **University of Victoria**

Closed-geometry Optimization

• Tune $Q \equiv \frac{\Delta \Psi}{2\pi} = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}$

Chromaticity $\xi \equiv \frac{\Delta Q}{\Delta n/n} = -\frac{1}{4\pi} \oint k(s)\beta(s)ds$

They are overall ring (circular machine) parameters, can only be calculated in closed-geometry

Tune Match

- Adjust quadrupoles at "Nikko" section where the dispersion is zero
- Fitting target: Q_x, Q_y
- Constraints: Matching the Twiss parameters at the exit of the Nikko section ($\beta_{x,v}$, $\alpha_{x,v}$)
- 8 variables: QR*NE(6 different Quadrupole pairs), QDRNE, QFRNE University

Comparison of "Nikko" section after optimization

Chromaticity match • Considers the extra quadrupole effect given by sextupoles, the

total Chromaticity is given by:

$$\xi_{tot} = \frac{1}{4\pi} \oint \left[-k($$

and η is the dispersion function

 Changing the sextupole strength does not change the beta sextupoles

 $(s) + m(s)\eta(s) \beta(s)ds$

Where k is the quadrupole strength, m is the sextupole strength,

function, thus the Chromaticity can be adjusted by tuning the University

- condition to cancel out the non-linear effects)
- match the original Chromaticity

 Sextupole pairs locates at the Rotator tuning area are turned off because the phase difference between these identical pairs is no longer π (the

Adjust sextuples in 4 arc section (45 pairs) shown in the picture above to

Ring Parameters Comparison after performing the closed-geometry optimization

Machine Parameter Tune Q_x Tune Q_y Chromaticity ξ_x Chromaticity ξ_{y} Damping partition J_x Damping partition J_{u} Emittance ε_x (m) 4 Emittance ε_{u} (m) 5.

Tune and Chromaticity are matched to the original

Driginal Ring	Rot Installed
45.530994	45.530994
43.580709	43.580709
1.593508	1.593508
1.622865	1.622865
1.000064	0.984216
1.000002	1.005266
$.44061 \times 10^{-9}$	4.89628×10^{-9}
65367×10^{-13}	3.96631×10^{-12}

Single Particle Spin Tracking Result

Spin Component	Entrance of the L-Rot	IP	Exit of the R-Rot
Х	-0.0000450734	0.0000066698	0.0000538792
Y	0.999999959	0.0000926945	0.999999959
Z	-0.0000788085	0.9999999957	-0.0000728110

the rotator installed in the High Energy Ring

• The spin track result shows a longitudinal spin alignment >99.99% with

Spin motion of the electron in the Rot Ring (KEK frame)

- to longitudinal e-polarization at the IP
- to anti-longitudinal e-polarization at the IP

• electron polarized aligned with the B field at the injection point corresponds

electron polarized anti-aligned with B field at the injection point corresponds University of Victoria

KEK Injection Linac polarization studies KEK Linac

Need to have transversely polarized beam at the injection point

Spin motion in the Linac

The spin tracking result shows if the electron starts with vertical spin (0,1,0) at the source, it will end up with a vertical spin at the injection point

University of Victoria

Anti-symmetric structure of vertical bends

Index	name	key	s(m)	l(m)	REF_TILT_TOT	B_field	floor.y	spin.x	spin.y	spin.z
3499	BV1UE	Sbend	661.981	1.906	-1.5708	-0.90687	0.070517	-5.656700e-16	0.38464	-9.230700e-01
3505	BV1DE	Sbend	666.036	1.906	1.5708	-0.90687	0.300000	-4.302700e-16	1.00000	7.612600e-16
3538	BV1UE	Sbend	676.670	1.906	-1.5708	-0.90687	0.370520	1.266100e-15	0.38464	-9.230700e-01
3544	BV1DE	Sbend	680.726	1.906	1.5708	-0.90687	0.600010	1.398400e-15	1.00000	-1.354100e-17
4134	BV2UE	Sbend	1006.619	1.906	-1.5708	-0.91564	0.671210	2.237800e-15	0.37411	-9.273800e-01
4139	BV2UE	Sbend	1008.875	1.906	-1.5708	-0.91564	0.910540	2.627600e-15	-0.72008	-6.938900e-01
4219	BV2DE	Sbend	1052.333	1.906	1.5708	-0.91564	7.312200	2.435100e-15	0.37411	-9.273800e-01
4224	BV2DE	Sbend	1054.589	1.906	1.5708	-0.91564	7.409500	2.182700e-15	1.00000	-4.510300e-16

Due to the anti-symmetric structure(same B field magnitude but with at the injection point

opposite direction) of vertical bend pairs, the vertical spin is re-established

Current ongoing work Beam Tracking Studies in the HER with spin rotator (Long Term

Tracking studies)

reach the maximum dynamic aperture rotator ring with BMAD

Transversely polarize the beam at the source

- Investigate the dynamic aperture, and tune sextupoles to
- Determine the polarization lifetime and beam lifetime in the

Appendix Open-geometry optimization result

Skew-Quad

Skew-Quad	L(m)	k_1 L	$B_1 (T/m)$	Tilt (rad)
B2EALSQ1	0.9837	0.511	12.133	-0.426
B2EALSQ2	0.9837	0.510	12.130	1.053
B2EALSQ3	0.9837	-0.314	-7.457	-0.988
B2EALSQ4	0.9837	0.855	20.315	0.030
B2EALSQ5	0.9837	0.688	16.350	-0.630
B2EALSQ6	0.9837	0.814	19.340	1.383
B2EBLSQ1	0.9837	0.558	13.266	0.651
B2EBLSQ2	0.9837	-0.482	-11.444	0.992
B2EBLSQ3	0.9837	0.426	10.119	-1.494
B2EBLSQ4	0.9837	0.338	8.024	-0.931
B2EBLSQ5	0.9837	0.562	13.359	0.735
B2EBLSQ6	0.9837	-0.185	-4.404	0.868

L-Rot

Skew-Quad	L(m)	$k_1 L$	$B_1 (T/m)$	Tilt (rad)
B2EARSQ1	0.9837	0.435	10.341	-2.610
B2EARSQ2	0.9837	0.600	14.258	2.290
B2EARSQ3	0.9837	0.043	1.032	2.328
B2EARSQ4	0.9837	-0.566	-13.451	-0.180
B2EARSQ5	0.9837	0.600	14.258	-2.545
B2EARSQ6	0.9837	-0.591	-14.038	0.618
B2EBRSQ1	0.9837	0.495	11.769	-2.480
B2EBRSQ2	0.9837	0.532	12.648	2.238
B2EBRSQ3	0.9837	0.280	6.663	-0.960
B2EBRSQ4	0.9837	-0.565	-13.429	-0.197
B2EBRSQ5	0.9837	0.600	14.258	-2.846
B2EBRSQ6	0.9837	-0.383	-9.098	0.475

R-Rot

Quadrupoles at the Rotator tuning region

Quads	L(m	$) \mid k$	$_{1}L$ (Original)	k_1L	(L-Rot)	$B_1(Original)'$	Γ/m	$B_1(L-Rot) T/m$
QD3E	0.820	3	-0.175	-	-0.177	-4.948		-5.012
QF4E	1.01!	5	0.035		0.071	0.805		1.633
QEAE	0.820	3	0.183		0.175	5.178		4.961
QD5E	0.820	3	-0.179	-	-0.286	-5.074		-8.079
QF6E	0.55'	7	0.163		0.342	6.855		14.366
QF2E	0.55'	7	0.192		0.145	8.050		6.067
QD1E	1.01!	5	-0.255	-	-0.203	-5.868		-4.682
Quads		(m)	$k_1 L$ (Original) k	L (R-Rot)	B ₁ (Original)	T/m	$B_1(R-Rot) T/m$
		826			$\frac{12}{0.165}$	5.074	- /	4 667
QD5E OFAF		826	-0.179		-0.103	5 178		-4.007
QDAD OF $4E$		$\begin{array}{c} 020 \\ 015 \end{array}$	0.103		0.134 0.067	0.805		1.538
QL 4D		896	0.035		0.007	4.048		7.088
QD3E		620 557	-0.173		-0.231 0.182	-4.940		-7.000
QF 2E		015 015	0.192		0.103	0.030 5.060		6.211
QDIE OLA 10DI		010	-0.255		-0.274	-0.000		-0.311
QLAIURI		826	0.202		0.185	5.718		5.234
QLA9RE	≌∥0.	826	-0.237		-0.226	-6.703		-6.385
QLA8RE	E 0.	557	0.203		0.169	8.527		7.106
QLA7RE	E 0.	826	-0.192		-0.195	-5.438		-5.522
QLA6RE	E 0.	826	0.202		0.205	5.716		5.808

L-Rot

R-Rot

Closed-geometry optimization result

Quadrupole at "Nikko" Section

Quadrupole	Length (m)	$k_1 (m^{-2})$ original	$k_1 \ (m^{-2}) \text{ Rot}$
Quadrapoio		$n_1 (m^2)$ original	
QFRNE	1.080	0.122	0.099
QDRNE	1.080	-0.118	-0.085
QR7NE	0.826	-0.252	-0.249
QR6NE	1.015	0.196	0.202
QR5NE	1.080	-0.110	-0.091
QR4NE	1.080	0.144	0.127
QR3NE	1.080	-0.145	-0.071
QR2NE	1.080	0.110	0.067

Name	L (m)	b2 (original)	b2 (Rot)
SD3TLE	1.030	-3.577	-3.789
SF6TLE	0.334	0.818	0.869
SD7TLE	1.030	-3.607	-3.819
SF8TNE	0.334	1.751	1.554
SD7NRE	1.030	-4.582	-4.788
SF6NRE	0.334	1.467	1.539
SD5NRE	1.030	-1.389	-1.573
SF4NRE	0.334	2.092	2.175
SD3NRE	1.030	-1.443	-1.628
SF2NRE	0.334	0.371	0.403
SF2NLE	0.334	0.077	0.109
SD3NLE	1.030	-3.070	-3.281
SF4NLE	0.334	0.497	0.535
SD5NLE	1.030	-1.527	-1.714
SF6NLE	0.334	0.660	0.705
SD7NLE	1.030	-1.537	-1.724
SD7FRE	0.334	-5.461	-5.652
SF6FRE	0.334	2.296	2.384
SD5FRE	1.030	-6.803	-6.954
SF4FRE	0.334	0.691	0.737
SD3FRE	1.030	-1.903	-2.099
SF2FRE	0.334	1.226	1.289
SF2FLE	0.334	0.856	0.897
SD3FLE	1.030	-1.359	-1.542
SF4FLE	0.334	0.541	0.581
SD5FLE	1.030	-2.926	-3.136
SF6FLE	0.334	2.260	2.353
SD7FLE	1.030	-6.909	-7.055
SF8FOE	0.334	1.871	1.770
SD7ORE	1.030	-7.242	-7.375
SF6ORE	0.334	0.217	0.245
SD5ORE	1.030	-2.833	-3.043
SF4ORE	0.334	1.686	1.761
SD3ORE	1.030	-3.123	-3.335
SF2ORE	0.334	0.362	0.397
SF2OLE	0.334	2.296	2.384
SD3OLE	1.030	-0.706	-0.868
SF4OLE	0.334	0.585	0.628
SD5OLE	1.030	-2.483	-2.689
SF6OLE	0.334	0.415	0.435
SD7OLE	1.030	-3.385	-3.598
SF8OTE	0.334	0.353	0.216
SD7TRE	1.030	-1.730	-1.921
SF6TRE	0.334	0.829	0.876
SD5TRE	1.030	-1.695	-1.885

Sextupoles adjusted to re-match the Chromaticity

The integrated sextupole strength is described by:

$$b_2 = \frac{k_2 L}{2}$$

Where k_2 is the sextupole strength, and L is the length

rest frame of the electron

Spin motion in the R-Rot

exit spin (at s = 193 m)

Initial spin (at s = 169 m)

rest frame of the electron

Spin motion between the Rot and the IP

