Fast First-Order Spin Propagation via the Bmad Library

Jacob Asimow Cornell ERL/EIC group PI: Georg Hoffstaetter

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

- Introduction to Bmad Library
- Spin tracking via Bmad
- Results
- Comparisons
- Questions

- Open-source software library for accelerator simulations
- Primarily developed by David Sagan
- Well documented: ~600 pages and counting, not including full tutorial
- <u>https://www.classe.cornell.edu/bmad/</u>
- Supports many different orbital tracking methods:
 - Bmad tracking, Runge-Kutta integration, symplectic integration, more
- But what about spin?

- Bmad interfaces with PTC integration code
 - Enables accurate calculations of Taylor transfer maps to arbitrary order
 - But... very slow for big lattices
- Must make choice: speed vs accuracy
- Bmad: let the user choose on an element-by-element basis
 - Specify choice of tracking method in lattice file

• Spin transport is governed by the Thomas-BMT equation:

$$\frac{d}{ds}\vec{S} = \vec{\Omega} \times \vec{S}$$

- PTC numerically integrates this equation
 - Requires resolving, even for identical elements
- For simple lattice elements, analytically solvable!
 - Drifts, dipoles, quadrupoles, combined function magnets, solenoids
- Solve differential equation once, reference later

• To save on computations, Bmad uses quaternions to represent rotations

- Noncommutative, associative extension of imaginary numbers satisfying:

$$i^2 = j^2 = k^2 = ijk = -1$$

• A rotation of θ about the unit vector $\vec{e} = e_x \hat{x} + e_y \hat{y} + e_z \hat{z}$ looks like:

$$q = \cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)\left(e_x \mathbf{i} + e_y \mathbf{j} + e_z \mathbf{k}\right)$$

• This changes the Thomas-BMT equation to:

$$\frac{dq}{ds} = \frac{1}{2}\Omega q$$
, with $\Omega = \Omega_x \mathbf{i} + \Omega_y \mathbf{j} + \Omega_z \mathbf{k}$

- Split Ω into design components Ω_0 and perturbative components ω
- On design orbit, q_0 must satisfy $\frac{dq_0}{ds} = \frac{1}{2}\Omega_0 q_0$
 - This q_0 solution is easily solvable: rotation about Ω_0
- First order solution is of the form $q = (q_0 + \Delta q) = q_0(1 + \Delta b)$

• Must satisfy
$$\frac{d}{ds} (q_0(1 + \Delta b)) = \frac{1}{2} (\Omega_0 + \omega) q_0(1 + \Delta b)$$

• To first order, this becomes: $\Delta b' = \frac{1}{2}q_0^{-1}\omega q_0$

- Used a "hard-edge" model:
 - Approximate fringe as Dirac-Delta function
 - Historical calculations neglected this effect
- Bmad: let user enable/disable each fringe, as needed
- Bmad handles propagation of exit fringe

Results (Solenoid Example)

Table 1: Definitions of constants, with solenoid strength k_s and solenoid length *l*.

Table 2: Quaternion transfer map for hard-edge solenoid entrance fringe. To calculate the exit fringe, replace all field strengths k_s with $-k_s$, and propagate to the end of the element.

Table 3: Quaternion transfer map for solenoid body. Quaternions must be normalized before use.

<i>s</i> =	a k _s l	$t = (1+a) k_s l$	$\chi = 1 + 1$	α γ		
$c_s =$	cos(s)	$c_{t2} = \cos(\frac{t}{2})$	$\zeta = \gamma$ –	- 1		
$c_{s2} =$	$\cos(\frac{1}{2})$	$s_{t2} = \sin(\frac{1}{2})$				
		$q_0 q_x$	q_y			
	1	1				
	x	$\frac{1}{4}k_s\chi$				
	у		$\frac{1}{4}k_s\chi$			
			4			
	q_0	q_x	4	q_y	q_z	
1	q 0 <i>c</i> t2	q_x	4	q_y	q_z $-s_{t2}$	•
1 <i>x</i>	q 0 <i>C</i> t2	$\frac{q_x}{\frac{1}{4}k_s\zeta((1-c_s)c_{t2}-s_s)}$	$\frac{4}{s_s s_{t2}}$ $\frac{1}{4} k_s \zeta(t)$	$\frac{q_y}{(-1+c_s)s_{t2}-s_sc_{t2}}$	q_z $-s_{t2}$	•
$\frac{1}{x}$	q ₀ c _{t2}	q_x $\frac{1}{4}k_s\zeta((1-c_s)c_{t2}-s_s)$ $\frac{1}{2}\zeta((1-c_s)s_{t2}+s_sc_t)$	$\frac{4}{sst_2} = \frac{1}{4}k_s\zeta(t_2)$	q_y (-1+c_s)s_{t2} - s_s c_{t2}) - c_s)c_{t2} - s_s s_{t2})	q_z $-s_{t2}$	-
$\frac{1}{x}$ p_x y	q ₀ <i>c</i> _{t2}	$q_{x} = \frac{1}{4}k_{s}\zeta((1-c_{s})c_{t2}-s_{t2})$ $\frac{1}{2}\zeta((1-c_{s})s_{t2}+s_{s}c_{t2})$ $\frac{1}{4}k_{s}\zeta((1-c_{s})s_{t2}+s_{t2})$	$\frac{1}{sst_2} + \frac{1}{4}k_s\zeta(t)$ $\frac{1}{2}\zeta(t)$ $\frac{1}{2}\zeta(t)$ $\frac{1}{4}k_s\zeta(t)$	$ q_y \\ (-1 + c_s)s_{t2} - s_s c_{t2}) \\ - c_s)c_{t2} - s_s s_{t2}) \\ (1 - c_s)c_{t2} - s_s s_{t2}) $	q_z $-s_{t2}$	-
$ \begin{array}{c} 1\\ x\\ p_x\\ y\\ p_y\\ p_y \end{array} $	q ₀ <i>c</i> _{t2}	$ q_x \\ \frac{1}{4} k_s \zeta((1-c_s)c_{t2} - s_s) \\ \frac{1}{2} \zeta((1-c_s)s_{t2} + s_s c_t) \\ \frac{1}{4} k_s \zeta((1-c_s)s_{t2} + s_s) \\ \frac{1}{2} \zeta((-1+c_s)c_{t2} + s_s) \\ \frac{1}{2$	$\frac{\frac{1}{4}}{\frac{1}{4}k_{s}\zeta(t)} = \frac{1}{4}\frac{1}{4}k_{s}\zeta(t)$ $\frac{1}{2}\frac{1}{2}\zeta(t)$ $\frac{1}{4}\frac{1}{4}k_{s}\zeta(t)$ $\frac{1}{4}\frac{1}{4}k_{s}\zeta(t)$ $\frac{1}{2}\zeta(t)$	$ \begin{array}{l} q_{y} \\ (-1+c_{s})s_{t2} - s_{s}c_{t2}) \\ - c_{s})c_{t2} - s_{s}s_{t2}) \\ (1-c_{s})c_{t2} - s_{s}s_{t2}) \\ - c_{s})s_{t2} + s_{s}c_{t2}) \end{array} $	<i>q_z</i> - <i>s</i> _{t2}	

- First compared SPRINT Taylor map computations to PTC
- Once satisfied, compare equilibrium polarization on EIC ESR 5.3 lattice via Bmad routine contains solenoids, quadrupoles, dipoles
- Nearly identical results produced ~6x faster via SPRINT!

- PTC beneficial for long term tracking
 - Compute accurate, higher-order map once, then reuse
 - Initial time complexity of PTC becomes obsolete
- SPRINT useful for tuning of accelerators
 - Taylor maps need to be recalculated when tuning magnet strengths
 - Examples: tuning optics, spin matching

- Bmad now supports precalculated first-order spin maps
 - Supports drift, quadrupole, dipole, solenoid, and combined function magnets
- Includes fringe kick calculations
- Useful for quick polarization calculations
- Results are nearly identical to accepted PTC tracking
- Bmad now has a spin formalism corresponding to orbital matrix formalism.

- Curious to learn more?
- https://www.classe.cornell.edu/bmad/
- Free in-person Bmad school Oct. 7-9, following ERL 2022:
 - https://indico.classe.cornell.edu/event/2068/

Thank you!

Questions?