Resonant depolarization precision, relation between spin tune and beam energy, beam energy and central mass energy for FCCee_z_213_nosol_18.seq

A. Bogomyagkov

Budker Institute of Nuclear Physics Novosibirsk

19-30 September, 2022 2nd FCC polarization workshop The goal of energy calibration is to determine central mass energy at the interaction point

Procedure:

- spin precession frequency measurement
- 2 calculation of the ring average beam energy
- calculation of the IP beam energy
- calculation of the central mass energy

Introduction: spin precession frequency

 Ω_0 is revolution frequency. *W* is spin precession frequency. Gyromagnetic ratio: $q = q_0 + q' = \frac{e}{mc} + q'$.

$$egin{aligned} \mathcal{W} &= rac{1}{2\pi} \oint \left(rac{q_0}{\gamma} + q'
ight) \mathcal{B}_{ot}(heta) \mathcal{d} heta &= \Omega_0 \cdot \left(1 + rac{q'}{q_0} rac{\langle \mathcal{B}_{ot}
angle}{\langle \mathcal{B}_{ot} / \gamma
angle}
ight) \ &pprox \Omega_0 \cdot \left(1 + \langle \gamma
angle rac{q'}{q_0}
ight) \,, \end{aligned}$$

$$\frac{q'}{q_0} = \frac{g-2}{2} = 1.1596521859 \cdot 10^{-3} \pm 3.8 \cdot 10^{-12}$$
$$E[MeV] = 440.64846 \left(\frac{W}{\Omega_0} - 1\right) \,.$$

.

Introduction: different energies

 ${\it E_0}pprox {\it p_0}{\it c}={e\over 2\pi}\oint {\it B_\perp} ds$

Average energy:

Design energy:

$$\langle E
angle = \oint E(s) rac{ds}{\Pi}$$

Measured energy:

$$E_{meas} = \left(rac{W_{spin}}{\Omega_0} - 1
ight)$$
440.64846 = $\langle E
angle + \Delta E$

Energy at IP:

$$E^{\pm}(IP) = \langle E^{\pm}
angle + \Delta E$$

Invariant mass: (central mass energy)

$$M = (E^{-}(IP) + E^{+}(IP))\cos\theta$$

Measured and average energy: momentum compaction chromaticity

Momentum compaction:
$$\delta = \frac{\Delta E}{E_0} = -\frac{1}{\alpha} \frac{\Delta \Omega}{\Omega_0}, \ \alpha = \alpha_0 + \alpha_1 \delta$$
Synchrotron oscillations: $\ddot{\delta} = -\omega_{syn}^2 \delta - \omega_{syn}^2 \frac{\alpha_1}{\alpha_0} \delta^2$ Average and RMS: $\langle \delta \rangle = -\frac{\alpha_1}{\alpha_0} \sigma_{\delta}^2, \ \langle \delta^2 \rangle = \sigma_{\delta}^2$ Average W: $\langle W \rangle_{\delta} = \gamma_0 \Omega_0 \frac{q'}{q_0} \left(1 - \alpha_0 \sigma_{\delta}^2 - \frac{\alpha_1}{\alpha_0} \sigma_{\delta}^2 \right)$ Average energy: $\langle E \rangle = E_0 \left(1 - \frac{\alpha_1}{\alpha_0} \sigma_{\delta}^2 - \alpha_0 \sigma_{\delta}^2 \right)$ Measured energy: $E_{meas} = E_0 \left(1 - \frac{\alpha_1}{\alpha_0} \sigma_{\delta}^2 - \alpha_0 \sigma_{\delta}^2 \right)$

Measured and average energy: momentum compaction chromaticity

Beam calibrations are performed on noncolliding bunches.

Beamstrahlung increases beam energy spread 3.5 times.

$$E_0 = 45.6 \text{ GeV}, \, \alpha_0 = 1.5 \cdot 10^{-5}, \, \alpha_1 = 8.6 \cdot 10^{-6}, \, \sigma_{\delta} = 3.8 \cdot 10^{-4}, \, \sigma_{\delta,bs} = 1.32 \cdot 10^{-3}$$

Detector field is $B_0 = 2$ T.

Deviation of compensating field is $\Delta B_c = 0.1$ T.

Length of compensating solenoid is $L_c = 0.75$ m.

 $B\rho = 152.105 \,\mathrm{T} \cdot \mathrm{m}, E_0 = 45.6 \,\mathrm{GeV}, \nu = 103.484.$

FCCee_z_213_nosol_18

$$\begin{split} \Delta\nu &= \frac{\varphi^2}{8\pi}\cot(\pi\nu) \approx \frac{1}{8\pi}\cot(\pi\nu) \left(\frac{\Delta B_c}{B_0}\frac{2B_0L_c}{B\rho}\right)^2 \approx 2\times 10^{-9} \,.\\ &\frac{\Delta E}{E_0} = \frac{\Delta\nu\cdot 440.65}{E_0} \approx 2\times 10^{-11} \,. \end{split}$$

Measured and average energy: vertical orbit

Spin tune shift (Kondratenko)

$$\Delta \nu = \frac{1}{2} \sum_{k} \frac{|\omega_k|^2}{\nu - k}$$

Spin harmonics

$$egin{aligned} &\omega_k = rac{1}{2\pi} \int \limits_{0}^{2\pi}
u y'' \exp\left[-i(\Phi(heta) -
u heta) - ik heta
ight] d heta \ &y'' = rac{1}{R} rac{d^2 y}{d heta^2}\,, \quad \Pi = 2\pi R\,, \quad ds = R d heta\,, \ \Phi(heta) = \int_{0}^{ heta}
u R extsf{K}_0(heta') d heta' \end{aligned}$$

Measured and average energy: vertical orbit distortions

Assumptions and definitions

- Spin tune $\nu = \frac{W_{spin}}{\Omega_0} 1$
- No straight sections: $\Phi(\theta) = \nu \theta$
- Constant vertical beta function: $\beta_y = const = \langle \beta_y \rangle$
- Average over circumference (), average over orbits⁻

Results

Measured and average energy: vertical orbit distortions

E, GeV	45.6	78.65	81.3
$\sqrt{\langle y^2 \rangle}$, mm	0.6	0.28	0.27
ν_y	269.22	269.2	269.2
$\Delta E, keV$	-31	-54	-56
$\sigma_{\Delta E}, \textit{keV}$	46	82	85
$\frac{\Delta E}{E}$	$-7 \cdot 10^{-7}$	$-7 \cdot 10^{-7}$	$-7 \cdot 10^{-7}$
$\frac{\sigma_{\Delta E}}{E}$	1 · 10 ⁻⁶	1 · 10 ⁻⁶	1 · 10 ⁻⁶

Beam energy shift needs to be added to the actual value of the beam energy, uncertainty is unavoidable and sets the minimum error.

Ring alignment: individual harmonics

Alignment harmonic

$$y = A_k \sin\left(k2\pi \frac{s}{\Pi}\right) = A_k \sin(k\theta),$$

where A_k is harmonic amplitude.

Spin harmonics

assuming no straight sections ($\Phi(\theta) = \nu \theta$)

$$\omega_{k} = -\frac{1}{2i}\nu\frac{A_{k}}{R}k^{2}, \qquad \qquad \frac{\Delta\nu}{\nu} = \frac{1}{8}\frac{A_{k}^{2}}{R^{2}}\left(\frac{\nu k^{4}}{\nu - k} + \frac{\nu k^{4}}{\nu + k}\right) = \frac{1}{4}\frac{A_{k}^{2}}{R^{2}}\frac{\nu^{2}k^{4}}{\nu^{2} - k^{2}}$$
$$\omega_{-k} = -\frac{1}{2i}\nu\frac{A_{k}}{R}k^{2}.$$

Measured and average energy: ring alignment

Beam energy $E = 45.6 \text{ GeV}, \nu = 103.484, \Pi = 100 \text{ km}$

$A_k = 15\cdot 10^{-3}$ m		
k	$\Delta u / u$	$ \omega_{k} $
1	$2 \cdot 10^{-13}$	$5 \cdot 10^{-5}$
2	$4 \cdot 10^{-12}$	$2 \cdot 10^{-4}$
3	$2 \cdot 10^{-11}$	$4 \cdot 10^{-4}$
4	$6 \cdot 10^{-11}$	$8 \cdot 10^{-4}$
10	2 · 10 ⁻⁹	$5 \cdot 10^{-3}$
50	2 · 10 ⁻⁶	0.12
100	$3.5 \cdot 10^{-4}$	0.5
103	$2.8 \cdot 10^{-3}$	0.5

$A_k = 3 \cdot 10^{-4}$ m			
k	$\Delta u / u$	$ \omega_{k} $	
1	$1 \cdot 10^{-16}$	1 · 10 ⁻⁶	
2	$2 \cdot 10^{-15}$	$4 \cdot 10^{-6}$	
3	$8 \cdot 10^{-15}$	$9 \cdot 10^{-6}$	
4	$2 \cdot 10^{-14}$	$2 \cdot 10^{-5}$	
10	$9 \cdot 10^{-13}$	$1 \cdot 10^{-4}$	
50	$8 \cdot 10^{-10}$	$2 \cdot 10^{-3}$	
100	$1.4 \cdot 10^{-7}$	$1 \cdot 10^{-2}$	
103	1.1 · 10 ⁻⁶	1 · 10 ⁻²	

Spin distribution width: synchrotron oscillations

Synchrotron oscillations: $\delta = \Delta E / E_0 = a \cdot \cos(\omega_{syn} t)$.

$$W = \Omega_0 \left(1 + \nu_0 - \alpha_0 \nu_0 \frac{a^2}{2} \right) + \Omega_0 \left(\nu_0 (1 - \alpha_0) - \alpha_0 \right) \sin(\omega_{syn} t) + \alpha_0 \Omega_0 \nu_0 \frac{a^2}{2} \cos(2\omega_{syn} t)$$

FCCee_z_202_nosol_13

Spin precession frequency distribution shifts and becomes wider by

$$\left\langle \frac{W - \Omega_0 (1 + \nu_0)}{\Omega_0 (1 + \nu_0)} \right\rangle = \left\langle -\frac{\alpha_0 \nu_0 \frac{a^2}{2}}{1 + \nu_0} \right\rangle = -\frac{\alpha_0 \nu_0 \sigma_\delta^2}{1 + \nu_0} = -2 \cdot 10^{-12}$$
$$\frac{\Delta E}{E_0} = -2 \cdot 10^{-14}$$

Spin distribution width: horizontal betatron oscillations

Ya.S. Derbenev, et al., "Accurate calibration of the beam energy in a storage ring based on measurement of spin precession frequency of polarized particles", Part. Accel. 10 (1980) 177-180

FCCee_z_202_nosol_13

Sextupole fields introduce additional
$$B_{\perp} \propto x^2$$
, $K2 = \frac{1}{B\rho} \frac{\partial^2 B_y}{\partial x^2}$.
Spin precession frequency distribution shifts and becomes wider by

Beam energy: vertical magnetic fields (horizontal correctors)

One corrector with deflection
$$\chi$$
: $\frac{\Delta E}{E_0} = -\frac{\chi \eta_x}{\alpha \Pi}$, $\chi = \oint \frac{\Delta B_y}{B\rho} ds$.
RMS of energy shift: $\sigma \left(\frac{\Delta E}{E_0}\right) = \frac{2\sqrt{2}\sin(\pi\nu_x)}{\alpha \Pi} \frac{\langle \eta_x \rangle}{\langle \beta_x \rangle} \sqrt{\langle x^2 \rangle}$

 $\sqrt{\langle x^2 \rangle}$ is RMS of horizontal orbit variation.

FCCee_z_202_nosol_13

$$\sigma\left(\frac{\Delta E}{E_0}\right) = -1.1 \cdot 10^{-3} [m^{-1}] \cdot \sqrt{\langle x^2 \rangle} [m] \,,$$

 $\sigma\left(\frac{\Delta E}{E_0}\right) = 10^{-6}$ demands stability of the horizontal orbit between calibrations $\sqrt{\langle x^2 \rangle} = 0.9$ mm.

Beam energy: vertical magnetic fields (quadrupoles)

Shifted quadrupole:
$$\frac{\Delta E}{E_0} = -\frac{\chi \eta_x}{\alpha \Pi}$$
, $\chi = K \mathbf{1} L \cdot \Delta x$, $K \mathbf{1} = \frac{1}{B\rho} \frac{\partial B_y}{\partial x}$.

FCCee_z_202_nosol_13

 $\frac{\Delta E}{E_0} = 10^{-6}$ demands stability of quadrupoles position between calibrations (10 min)

Quadrupole	Δx , m
QC7.1:	$2 \cdot 10^{-4}$
QY2.1:	$6.5 \cdot 10^{-5}$
QFG2.4:	$1.6 \cdot 10^{-4}$
QF4.1:	$1.6 \cdot 10^{-4}$
QG6.1:	5 · 10 ⁻⁵
QF4:	$\Delta x/\sqrt{720} = 6\cdot 10^{-6}$

Central mass energy: β chromaticity

Invariant mass: $M^2 = (E_1 + E_2)^2 \cos^2(\theta) + O(m_e^2) + O(\sigma_\alpha^2) + O(\sigma_E^2)$. Beta function chromaticity at IP: $\beta_{x,y} = \beta_{0x,y} + \beta_{1x,y}\delta$, $\sigma_{x,y}^2 = \varepsilon_{x,y}\beta_{x,y}$. Particles with energy deviation have higher collision rate.

A. Bogomyagkov (BINP)

FCCee_z_202_nosol_13: goal

$\frac{1}{\beta_x}\frac{d\beta_x}{d\delta}$	$\frac{1}{\beta_y} \frac{d\beta_y}{d\delta}$	ΔM , keV	$\frac{\Delta M}{E_0}$
0	1.2	-51 ± 8.5	$-1.1\cdot10^{-6}\pm1.9\cdot10^{-7}$
200	0	-13 ± 8.5	$-2.8\cdot10^{-7}\pm1.9\cdot10^{-7}$
200	1.2	-61 ± 8.5	$-1.3\cdot 10^{-6}\pm 2\cdot 10^{-7}$
200	12	-489 ± 8.5	$-1.1\cdot 10^{-5}\pm 2\cdot 10^{-7}$

Need to measure and adjust $\frac{1}{\beta_{0y}} \frac{d\beta_y}{d\delta}$.

Energy dependence on azimuth: full tapering

Two diametrically opposite RF cavities, U_0 — energy loss per revolution, E(0) — after RF cavity. Full tapering — magnets fields are adjusted to keep design curvature, quadrupole strength etc.

$$egin{aligned} rac{dE}{ds} \propto E^4\,, & E(s) = rac{E(0)}{(1+k\cdot s)^{rac{1}{3}}}\,, & k pprox rac{3}{\Pi}rac{U_0}{E(0)} + rac{3}{\Pi}rac{U_0^2}{E(0)^2} + O(U_0^3)\,, & \langle E
angle pprox E(0) - rac{U_0}{4} - rac{U_0^2}{12E(0)}\,, & E(IP) = E(0) - rac{U_0}{4}\,. \end{aligned}$$

~

<i>E</i> (0), GeV	$E(IP) - \langle E angle$, keV	$rac{m{E}(IP)-\langle m{E} angle}{\langle m{E} angle}$
45.6	2.3	5 · 10 ⁻⁸
80.5	125	1.5 · 10 ⁻⁶

Energy dependence on azimuth: partial tapering

Partial tapering (ΔK_0) — fields of magnets groups are adjusted to keep approximately design curvature (K_0).

Equations of motion (canonical variables)

$$\begin{cases} \sigma' = -K_0 x, \\ p_t' = \left(-\frac{eV_0}{p_0 c}\right) \sin\left(\phi_s + \frac{2\pi}{\lambda_{RF}\sigma}\right) \delta(s-s_0) - \frac{2}{3} \frac{e^2 \gamma^4}{p_0 c} K_0^2 \sigma ds \end{cases}$$

Solution: $p_t(s) = p_{0t} - f(s)$.

$$\sigma = \mathbf{0} = -\int_0^{\Pi} K_0(s) \mathbf{x}(s) ds = -\mathbf{p}_{0t} \alpha \Pi + \Pi \left\langle (K_0 f + \Delta K_0) \eta \right\rangle_s.$$

$$p_{0t} = \frac{1}{\alpha} \left\langle (K_0 f + \Delta K_0) \eta \right\rangle_s.$$

Energy dependence on azimuth: partial tapering

For simple (symmetrical) cases we do need to know function f(s), just at certain points.

Two RF cavities and symmetrical arcs

$$\begin{cases} \langle p_t \rangle = p_{0t} - \langle f \rangle = p_{0t} - \frac{U_0}{4E_0} = \frac{\langle E \rangle - E_0}{E_0} ,\\ p_t(IP) = p_{0t} - f(IP) = p_{0t} - \frac{U_0}{4E_0} = \frac{E_{IP} - E_0}{E_0} ,\\ \\ \begin{cases} \langle E \rangle = E_0 + E_0 p_{0t} - \frac{U_0}{4} ,\\ \\ E_{IP} = E_0 + E_0 p_{0t} - \frac{U_0}{4} . \end{cases} \end{cases}$$

There is no difference between $\langle E \rangle$ and E_{IP} in the first order. Numerical calculations are needed for not symmetrical arcs, magnet misalignments.

Electron in the field of own bunch will have potential energy

$$U[eV] = \frac{N_{p}e^{2}[Gs]}{\sqrt{2\pi}\sigma_{s}[cm]} \left(\gamma_{e} + \ln(2) - 2\ln\left(\frac{\sigma_{x} + \sigma_{y}}{r}\right)\right) \frac{10^{-7}}{e[C]}$$

 $\gamma_e = 0.577$ Euler constant, $N_p = 4 \cdot 10^{10}$ — bunch population, $r_{ip} = 15$ mm and $r_{arc} = 20$ mm — vacuum chamber radius at IP and in the arcs, $\sigma_{x,IP} = 6.2 \cdot 10^{-6}$ m, $\sigma_{y,IP} = 3.1 \cdot 10^{-8}$ m, $\sigma_{x,arc} = 1.9 \cdot 10^{-4}$ m, $\sigma_{y,arc} = 1.2 \cdot 10^{-5}$ m.

$$\frac{U_{ip}}{E_0} = \frac{469 \text{keV}}{45.6 \text{GeV}} = 1 \cdot 10^{-5} ,$$

$$\frac{U_{arc}}{E_0} = \frac{290 \text{keV}}{45.6 \text{GeV}} = 6 \cdot 10^{-6} .$$

Potential energy at the center of the bunch $\{x, y, s, z = s - ct\} = \{0, 0, 0, 0\}$

$$\begin{split} U(x,y,s,ct) &= -\frac{\gamma N_{p} r_{e} m c^{2}}{\sqrt{\pi}} \int_{0}^{\infty} dq \frac{\exp\left[-\frac{(x+s\cdot 2\theta)^{2}}{2\sigma_{x}^{2}+q} - \frac{y^{2}}{2\sigma_{y}^{2}+q} - \frac{\gamma^{2}(s+ct)^{2}}{2\gamma^{2}\sigma_{s}^{2}+q}\right]}{\sqrt{2\sigma_{x}^{2}+q}\sqrt{2\sigma_{y}^{2}+q}\sqrt{2\gamma^{2}\sigma_{s}^{2}+q}} ,\\ &\frac{U(0,0,0,0)}{E_{0}} = -\frac{1MeV}{45.6\,GeV} = -2.3\cdot 10^{-5} . \end{split}$$

Invariant mass in the external field

The four-momentum:
$${m P}^{\mu}=({m E}-{m e}arphi,{m ec
ho})=({m E}-{m e}arphi,{m ec
ho}-{m e\over c}{m ec A})\,,$$

Energy-momentum relation: $(E - e\varphi)^2 = m^2 c^4 + c^2 (\vec{p})^2$.

Invariant mass:

$$M^{2} = (P_{1}^{\mu} + P_{2}^{\mu})^{2} = 2E_{1}e_{1}\varphi + 2E_{2}e_{2}\varphi + 2E_{1}E_{2} - (e_{1}\varphi)^{2} - (e_{2}\varphi)^{2} - 2p^{(1)}p^{(2)}.$$

Longitudinal momentum ($\delta = (E_i - E_0)/E_0$, $u = e_i \varphi/E_0$):

$$p_{i,s} = \sqrt{(E_i - e_i \varphi)^2 - p_{i,x}^2 - p_{i,y}^2} = E_0 \sqrt{(1 + \delta_i - u)^2 - \left(\frac{p_{i,x}}{E_0}\right)^2 - \left(\frac{p_{i,y}}{E_0}\right)^2}$$

.

Average values

$$\left\langle M^2 \right\rangle = 4E_0^2 \cos^2(\theta)(1-u^2) - 2E_0^2 \sigma_{px}^2 \cos(2\theta) - 2E_0^2 \sigma_{py}^2 \cos(2\theta)$$

$$\left\langle M \right\rangle = 2E_0 \cos(\theta) \left(1 - \frac{u^2}{2}\right) - \frac{E_0}{2} \left(\sigma_\delta^2 \cos(\theta) + \sigma_{px}^2 \cos(\theta) + \sigma_{py}^2 \frac{\cos(2\theta)}{\cos(\theta)}\right)$$

$$\left\langle M^2 \right\rangle - \left\langle M \right\rangle^2 = 2E_0^2 \cos^2(\theta) \left(\sigma_\delta^2 + \sigma_{px}^2 \tan^2(\theta)\right)$$

Invariant mass shift due to beam potentials

$$rac{\langle M
angle - 2E_0\cos(heta)}{2E_0\cos(heta)} = \left(1 - rac{(earphi)^2}{2E_0^2}
ight) pprox 3 imes 10^{-10}$$

Summary

Largest corrections and errors

- Momentum compaction factor chromaticity and different energy spreads for colliding and noncolliding bunches (correction, error) $\frac{\Delta E}{F} \lesssim -1 \times 10^{-6}$.
- 2 Vertical orbit distortions (error): $\frac{\sigma_{\Delta E}}{E} \simeq 1 \times 10^{-6}$ require $\sqrt{\langle y^2 \rangle} \leq 0.3$ mm.
- Spin distribution width from horizontal betatron oscillations (error) $\frac{\Delta E}{E} \simeq 1 \times 10^{-6}$.
- Output A state of the state
- Solution IP energy difference from average at 80.5 GeV (correction) $\frac{\Delta E}{E} \simeq 1 \times 10^{-6}$.
- Seta function chromaticity (correction, tunable) $< 1 \times 10^{-6}$.
- **②** Ring vertical alignment should be better than $3 \cdot 10^{-4}$ m over 1 km to have spin tune shift $\delta \nu / \nu < 10^{-6}$ for E = 45.6 GeV.