CNIS

Exploring Composite Higgs Models at FCC

Giacomo Cacciapaglia IP2I Lyon, France

Motivation

- · Composite models 'solve' the Hierarchy problem...
- with new scale in the multi-TeV!

multi-TeV mountain

What are we looking for?

- -> Precision EW + Higgs observables
- -> light composite scalars
- -> multi-TeV resonances (top partners, pNGBs, spin-1)

Composite Higgs models 101

- · Symmetry broken by a condensate (of TC-fermions)
- Higgs and longitudinal Z/W emerge as mesons
 (pions)

Scales:

f : Higgs decay constant v : EW scale $m_\rho \sim 4\pi f$

EWPTs + Higgs coupl. limit:

 $f \gtrsim 4v \sim 1 \,\,\mathrm{TeV}$

Composite Higgs models 101

How can light states emerge?

The partial compositeness paradigm

Kaplan Nucl. Phys. B365 (1991) 259

we assume:

 $d_H > 1$ $d_{H^2} > 4$

 $\frac{1}{\Lambda_{\rm q}^{d-1}} \mathcal{O}_H q_L^c q_R \qquad \Delta m_H^2 \sim \left(\frac{4\pi f}{\Lambda_{\rm q}}\right)^{d-4} f^2 \qquad \text{Both irrelevant if}$

Let's postulate the existence of fermionic operators:

 $\frac{1}{\Lambda_{\rm fl.}^{d_F-5/2}} (\tilde{y}_L \ q_L \mathcal{F}_L + \tilde{y}_R \ q_R \mathcal{F}_R)$

This dimension is not related to the Higgs!

 $f(y_L \ q_L Q_L + y_R \ q_R Q_R)$ with $y_{L/R} f \sim \left(rac{4\pi f}{\Lambda_{
m e}}
ight)^{d_F-5/2} 4\pi f$

Composite models at various scales

Planck scale

10 TeV

100 Gev

HC and SM gauge groups partially unified

symmetry breaking by scalars

4-fermion Ops generated!

Conformal window (large scaling dimensions)

Low energy model + additional fermions

Condensation scale

Usual low energy description of composite Higgs models

Standard Model

Phenomenology accessible to colliders

Composite models at various scales

Composite models at various scales

Planck scale

The composite Higgs wilderness

- @ Light ALPs
- @ Electroweak pNGBs
- Coloured scalars (not in this talk)
- Common exotic top partner decays
- Exotic top partners
- @ Spin-1 resonances (not in this talk)
- What are muon anomalies trying to tell us?

The composite Higgs wilderness

- @ Light ALPs
- @ Electroweak pNGBs
- Coloured scalars (not in this talk)
- Common exotic top partner decays
- Exotic top partners
- Spin-1 resonances (not in this talk)
- What are muon anomalies trying to tell us?

EW and Higgs precision!!!

Typical ALP Lagrangian:

$$\mathcal{L}_{\text{eff}}^{D\leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_F \, \mathcal{C}_F \, \gamma_{\mu} \, \psi_F + g_s^2 \, C_{GG} \, \frac{a}{\Lambda} \, G_{\mu\nu}^A \, \tilde{G}^{\mu\nu,A} + g^2 \, C_{WW} \, \frac{a}{\Lambda} \, W_{\mu\nu}^A \, \tilde{W}^{\mu\nu,A} + g'^2 \, C_{BB} \, \frac{a}{\Lambda} \, B_{\mu\nu} \, \tilde{B}^{\mu\nu} \,,$$

Composite Higgs scenario:

$$\frac{C_{WW}}{\Lambda} \sim \frac{C_{BB}}{\Lambda} \sim \frac{N_{\rm TC}}{64\sqrt{2} \pi^2 f}$$
$$(C_{\gamma\gamma} = C_{WW} + C_{BB})$$

 $\frac{C_{GG}}{\Lambda} = 0$

(Poor bounds at the LHC)

C_F is loop-induced:

M.Bauer et al, 1708.00443

Typical ALP Lagrangian:

$$\mathcal{L}_{\text{eff}}^{D\leq 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_F \, C_F \, \gamma_{\mu} \, \psi_F$$
$$+ g_s^2 \, C_{GG} \, \frac{a}{\Lambda} \, G_{\mu\nu}^A \, \tilde{G}^{\mu\nu,A} + g^2 \, C_{WW} \, \frac{a}{\Lambda} \, W_{\mu\nu}^A \, \tilde{W}^{\mu\nu,A} + g'^2 \, C_{BB} \, \frac{a}{\Lambda} \, B_{\mu\nu} \, \tilde{B}^{\mu\nu} \, ,$$

Composite Higgs scenario:

Free parameters:

 f, m_a

 $\frac{C_{WW}}{\Lambda} \sim \frac{C_{BB}}{\Lambda} \sim \frac{N_{\rm TC}}{64\sqrt{2} \ \pi^2 f}$

 $(\overline{C_{\gamma\gamma}} = \overline{C_{WW}} + \overline{C_{BB}})$

We will consider two scenarios: Photo-philic and Photo-photic

Tera-Z portal to compositeness (via ALPs) WZW SS

G.Cacciapaglia et al. 2104.11064

This process is always associated with a monochromatic photon.

Tera Z phase of FCC-ee will lead to 5-6 10^12 Z bosons at the end of the run.

Ideal test for rare Z decays!!

Tera-Z portal to compositeness (via ALPS) G.Cacciapagli

G.Cacciapaglia et al. 2104.11064

Photo-phobic

Photo-philic

No leading order coupling to Photons (WZW interaction is Zero!!)

> eg. SU(4)/SP(4), $SU(4)\times SU(4)/SU(4)$

WZW interaction to photons (like the pion) eg. SU(5)/SO(5), SU(6)/SO(6)

Phenomenology-Prompt Decays

Photo-philie G.Cacciapaglia et al. 2104,11064

 ${\it o}$ Three isolated photons $BR(Z \to 3\gamma)_{\rm LEP} < 2.2 \cdot 10^{-6}$

Discriminating variable: invariant mass

Photon ordering changes at inv. mass 50 GeV

> Bins above 80 GeV populated by fakes: hard to estimate!

Typical EWPT bound

G.Cacciapaglia et al. 2104.11064

EW pNGB direct production

W.Porod et al. work in progress

- Dominantly pair-produced (no VEVs except for the doublet)
- Couplings to two EW gauge bosons via WZW
- Couplings to two fermions via partial compositeness
- Few dedicated direct searches (WWWW and WWWZ via doubly-charged scalar)

EW pNGB direct production

Porod et al. 'k in progress

- Decays to two GBs from
 WZW anomaly
- Small couplings
- Cascade decays can be competitive
- Photon-rich final states!

- Typically sizeable
 couplings to top and
 bottom
- Always dominate if present!
- They may be absent model dependence!

Fermio-phobic SU(5)/SO(5) model

(d) Decays of η_5^0 for $m_5 = 600 \text{ GeV} > m_3$

W.Porod et al. work in progress

Decays to two GBs from
 WZW anomaly

(c) Decays of η_5^+ for $m_5 = 600 \text{ GeV} > m_3$

- Small couplings
- Cascade decays can be competitive
- Photon-rich final states!

Cascade decays competitive for mass splits around 50 GeV

SU(5)/SO(5) benchmark

W.Porod et al. work in progress

- Run all searches in MadAnalysis, Checkmate and Contur
 on all di-scalar pair production channels.
- Best Limits from multi-photon searches (ATLAS generic analysis)
- Many channels contribute to the same signal region!

SU(5)/SO(5) benchmark

W.Porod et al. work in progress

Exclusion from multi-photon search

S++ cascade decays

Change in dominant SR

Top partner pheno revisited

A.Banerjee et al 2203.0727 (Snowmass LOI)

PNGBS lighter than the top partners are to be expected in all composite models

The S decays are model-dependent, but they can be classified:

$$\begin{split} S_i^{++} &\to W^+ W^+ \\ S_i^+ &\to W^+ \gamma, \, W^+ Z \\ S_i^0 &\to W^+ W^-, \, \gamma \gamma, \, \gamma Z, \, ZZ. \end{split} \qquad \begin{array}{l} S^{++} &\to W^+ t \overline{b}, \\ S^+ &\to t \overline{b}, \\ S^0 &\to t \overline{t}, \, b \overline{b}. \end{split}$$

Calculable ratios (from anomalies) and always present for all models.

Dominant, if present for the specific S.

Common exolic lop parlner decays

$$\mathcal{L}_{\Psi fV} = \frac{e}{\sqrt{2}s_W} \kappa_{T,L}^W \overline{T} W^+ P_L b + \frac{e}{2c_W s_W} \kappa_{T,L}^Z \overline{T} Z P_L t + \frac{e}{\sqrt{2}s_W} \kappa_{B,L}^W \overline{B} W^- P_L t + \frac{e}{2c_W s_W} \kappa_{B,L}^Z \overline{B} Z P_L b + \frac{e}{\sqrt{2}s_W} \kappa_{X,L}^W \overline{X} W^+ P_L t + L \leftrightarrow R + \text{h.c.}$$
(14)

$$\mathcal{L}_{\Psi fS} = \sum_{i} S_{i}^{+} \left[\kappa_{T,L}^{S_{i}^{+}} \overline{T} P_{L} b + \kappa_{X,L}^{S_{i}^{+}} \overline{X} P_{L} t + L \leftrightarrow R \right] + \text{h.c.} + \sum_{i} S_{i}^{-} \left[\kappa_{B,L}^{S_{i}^{-}} \overline{B} P_{L} t + L \leftrightarrow R \right] + \text{h.c.} + \sum_{i} S_{i}^{0} \left[\kappa_{T,L}^{S_{i}^{0}} \overline{T} P_{L} t + \kappa_{B,L}^{S_{i}^{0}} \overline{B} P_{L} b + L \leftrightarrow R \right] + \text{h.c.} + \sum_{i} S_{i}^{++} \left[\kappa_{X,L}^{S_{i}^{++}} \overline{X} P_{L} b + L \leftrightarrow R \right] + \text{h.c.}$$

$$(15)$$

 Possible to write a Master-Lagrangian containing all possible couplings, implemented at NLO in MG (FSMOG)

Work in progress by A. Deandrea and B. Fuks

Common exolic top partner decays 2203.0727 (Snowmass LOI)

0

0

400 600 800 0 200 1000 1200 1400 1600 1800 2000 B→bH, 1808.02343 (ATLAS) B→bZ, 1808.02343 (ATLAS) B→tW⁻, 1808.02343 (ATLAS) T→tH, 1808.02343 (ATLAS) 3 ab⁻¹, 1905.03772 3 ab⁻¹, 1710.02325 T→tZ, 1808.02343 (ATLAS) T→bW+, 1808.02343 (ATLAS) 3 ab⁻¹, 1907.05894 1810.03188 (CMS VLQ pair production with exotic decay $T \rightarrow tS^0, S^0 \rightarrow Z\gamma, 1907.05929$ 1800 $S^0 \rightarrow ZZ + Z_V + W^+ W^-$, 1907.05894 π₆π₆, π₆→t_Rt_R, 1907.05894 →tS⁰, S⁰→tt, 1907.05894 T→tS⁰, S⁰→bb, 2002.12220 1600 T→tS⁰, S⁰→jj, 2002.12220 →tS⁺,*S*⁺→<u>W</u>⁺Z/γ, 1907.05894 $X_{5/3} \rightarrow tS^+, S^+ \rightarrow t\overline{D}, 1907.05894$ $X_{5/3} \rightarrow tS^+, S^+ \rightarrow \tau^+ v$, 1907.05894 1400 m_S (GeV) \rightarrow bS⁺⁺, S⁺⁺ \rightarrow W⁺S⁺, S⁺ \rightarrow W⁺Z/y, 1907.05894 $X_{5/3} \rightarrow bS^{++}, S^{++} \rightarrow W^+ S^+, S^+ \rightarrow tb, 1907.05894$ 1200 $X_{5/3} \rightarrow bS^{++}, S^{++} \rightarrow W^+ S^+, S^+ \rightarrow \tau_V, 1907.05894$ $_{3} \rightarrow \overline{b} \pi_{6}, \pi_{6} \rightarrow t_{R} t_{R}, 1907.05894$ S⁺+S⁻⁻⁻, S⁺+→W⁺ W⁺, 2101.11961 (ATLAS) 1000 murms 1111 800 1 1301.6065 (LEP) 11311 П 600 11:11 11 /111 11 400 murmstm , ₹ ò 200 δ ð 0 200 600 800 1200 2000 0 400 1000 1400 1600 1800 m_ψ (GeV)

Dedicated searches may be useful to push up the limits.

- Projections for FCC-hh are needed...
- in combination with scalar
 direct production.

G.Cacciapaglia et al. 2112.00019

A specific model: M5 of Ferretti's classification

Underlying fermions (like quarks)

	$\operatorname{Sp}(2N_c)$	${\rm SU(3)}_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	SU(5)	SU(6)	U(1)
$\psi_{1,2}$		1	2	1/2			
$\psi_{3,4}$		1	2	-1/2	5	1	$-rac{3q_{\chi}}{5(N_c-1)}$
ψ_5		1	1	0			
χ_1							
χ_2		3	1	-x			
χ_3					1	6	<i>a</i> .
χ_4							Чχ
χ_5		$\overline{3}$	1	x			
χ_6							

Baryons (top partners)

	$SU(5) \times SU(6)$	$SO(5) \times Sp(6)$	names
$\psi \chi \chi$	$({f 5},{f 15})$	$({f 5},{f 14})$	\mathcal{B}^1_{14}
		$+({f 5},{f 1})$	\mathcal{B}_1^1
	$({\bf 5},{\bf 21})$	$({f 5},{f 21})$	\mathcal{B}_{21}^1
$\psi \bar{\chi} \bar{\chi}$	$({f 5},\overline{{f 15}})$	$({f 5},{f 14})$	\mathcal{B}_{14}^2
		$+({f 5},{f 1})$	\mathcal{B}_1^2
	$({f 5},\overline{{f 21}})$	$({f 5},{f 21})$	\mathcal{B}_{21}^2
$\left \bar{\psi} \bar{\chi} \chi \right $	$(ar{5}, ar{35})$	$({f 5},{f 14})$	\mathcal{B}^3_{14}
		$+({f 5},{f 21})$	\mathcal{B}^3_{21}
	$(ar{f 5}, {f 1})$	$({f 5},{f 1})$	\mathcal{B}_1^3

 ${f 14} o {f 8_0} + {f 3_{-2x}} + {f ar 3_{2x}} \,,$

 $21 o 8_0 + 6_{2{f x}} + ar 6_{-2{f x}} + 1_0$.

G.Cacciapaglia et al. 2112.00019

A specific model: M5 of Ferretti's classification

Underlying fermions (like quarks)

	$\operatorname{Sp}(2N_c)$	${\rm SU}(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	SU(5)	SU(6)	U(1)
$\psi_{1,2}$		1	2	1/2			
$\psi_{3,4}$		1	2	-1/2	5	1	$-\frac{3q_{\chi}}{5(N_c-1)}$
ψ_5		1	1	0			
χ_1							
χ_2		3	1	-x			
χ_3					1	6	<i>a</i> ₂ ,
χ_4							Чχ
χ_5		$\overline{3}$	1	x			
χ_6							

Baryons (top partners)

G.Cacciapaglia et al. 2112.00019

A specific model: M5 of Ferretti's classification

Underlying fermions (like quarks)

	$\operatorname{Sp}(2N_c)$	${\rm SU(3)}_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	SU(5)	SU(6)	U(1)
$\psi_{1,2}$		1	2	1/2			
$\psi_{3,4}$		1	2	-1/2	5	1	$-\frac{3q_{\chi}}{5(N_c-1)}$
ψ_5		1	1	0			
χ_1							
χ_2		3	1	-x			
χ_3					1	6	<i>a</i>
χ_4							Чχ
χ_5		$\overline{3}$	1	x			
χ_6							

Baryons (top partners)

G.Cacciapaglia et al. 2112.00019

Exolic lop partners

G.Cacciapaglia et al. 2112.00019

The baryon content looks ironically SUSY-like!

G.Cacciapaglia et al. 2112.00019

Octoni bounds

G.Cacciapaglia et al. 2112.00019

Model implemented in MG.
Check limits from searches in MadAnalysis and CheckMate.
Strongest bound from gluino and stop searches!

There's something about Muons

- $R_K = \frac{\text{BR} (B^+ \to K^+ \mu^+ \mu^-)}{\text{BR} (B^+ \to K^+ e^+ e^-)} = 0.846^{+0.044}_{-0.041}$
- @ 9-2 fixes the scale of new physics
- natural values for TC-like
 theories!
- RK requires large muon couplings
 (attainable in strong dynamics)
 - These anomalies will be further probed in the near future!

BOMUS tracks

What if FCC-ee discovers Z > ya?

G.Cacciapaglia et al. work in progress

Is it possible to distinguish the composite scenario, from an elementary mock-up model?

$$\Phi = H + i a$$

Singlet scalar

Triangle loops can mimic the WZW interactions of the composite ALP:

 Ψ = doublet + singlet

doublet + singlet = photo-phobic case

 Note: fermion masses of the order of TeV, potentially discoverable at HL-LHC or FCC-hh (QCD-neutral)

What if FCC-ee discovers Z > ya?

G.Cacciapaglia et al. work in progress

Is it possible to distinguish the composite scenario,
 from an elementary mock-up model?

EWPT only depend on H loops

composite case: see 1502.04718

For fixed BR = 10⁻⁸, i.e. discovery.

Arrows: naive contribution of top partner loops.