16th September, 2022 SUSY scenarios at FCC

Keisuke Harigaya (University of Chicago)

* Motivation of supersymmetry

* Higgs mass and scalar masses mo in the MSSM

* $m_0 \sim 10 \text{ TeV}$

* $m_0 = 100 - 1000$ TeV

* $m_0 \gg 1000$ TeV

Outline

* Motivation of supersymmetry

* Higgs mass and scalar masses m_0 in the MSSM

* $m_0 \sim 10 \text{ TeV}$

* $m_0 = 100 - 1000$ TeV

* $m_0 \gg 1000$ TeV

Outline

1. Dark Matter

With R parity conservation, the lightest supersymmetric particle is stable

boson fermion

+

+ H_u, H_d Gauge, gravity

 $Q, \bar{u}, \bar{d}, L, \bar{e}$

+

"Fermion number" of SO(10): $16 = (Q, \overline{u}, \overline{d}, L, \overline{e})$ is odd Z_2 subgroup of 3(B - L) : baryons and leptons are odd

Higgsino, bino, wino, gravitino, (sneutrino)

Reparity can arise from SO(10) or B - L + 40 fermion number

Affleck and Dine (1985)

Rotation of squarks or sleptons in the early universe can explain the baryon asymmetry of the universe

4. Electroweak scale

MSSM does not explain the EW scale fully naturally, but still the huge hierarchy problem is absent.

$m_{\rm SUSY} \ll M_{\rm PI}, M_{\rm st}, M_{\rm GUT}$

can be explained by dimensional transmutation Witten (1981) $m_{\rm SUSY} \propto \exp(-\frac{8\pi^2}{b\alpha^2})$

Dg

Dynamical SUSY breaking

5. Intermediate scales

Supersymmetry can stabilize intermediate scales in BSM models

* Peccei-Quinn symmetry breaking scale

* Parity symmetry breaking scale

* Right-handed neutrino mass scale

* Inflation scale

Today's strategy **Discuss canonical scenarios:**

* Minimal supersymmetric Standard Model * Sfermion masses are not hierarchical * Unification * Avoiding tuning except for the EW scale

* Thermal dark matter abundance not too large

* Motivation of supersymmetry

* Higgs mass and scalar masses m_0 in the MSSM

* $m_0 \sim 10 \text{ TeV}$

* $m_0 = 100 - 1000$ TeV

* $m_0 \gg 1000$ TeV

Outline

In SUSY limit,

 $V_4 = \frac{g_2^2 + g_Y^2}{8} (|H_u|^2 - |H_d|^2)^2 \to \frac{g^2 + g_Y^2}{8} \cos(2\beta) |H|^4,$

Higgs mass and SUSY breaking

Fours scenarios in the MSSM

* $m_0 = \text{few TeV}$ with $\tan\beta \gg 1$ and a large trilinear

* $m_0 \sim 10$ TeV with $\tan\beta \gg 1$

* $m_0 \sim 100 - 1000$ TeV with $\tan\beta = O(1)$

* $m_0 \gg 1000$ TeV with $\tan\beta \simeq 1$

FCC-hh

Fours scenarios in the MSSM

* $m_0 = \text{few TeV}$ with $\tan\beta \gg 1$ and a large trilinear

* $m_0 \sim 10$ TeV with $\tan\beta \gg 1$

* $m_0 \sim 100 - 1000$ TeV with $\tan\beta = O(1)$

* $m_0 \gg 1000$ TeV with $\tan\beta \simeq 1$

more challenging?

* Motivation of supersymmetry

* Higgs mass and scalar masses mo in the MSSM

* $m_0 \sim 10 \text{ TeV}$

* $m_0 = 100 - 1000$ TeV

* $m_0 \gg 1000$ TeV

Outline

Gravity mediation • Gauge mediation

SUSY breaking

 $\mathcal{L} \sim \frac{FF'}{\tilde{a}^{\dagger}}$

Planck-scale $M_{\rm PL}$ suppressed interactions

Gravity mediation

F: SUSY breaking parameter

All sfermion masses are around 10 TeV A canonical scenario: • Unification: $m_{bino}: m_{wino}: m_{gluino} \simeq 1:2:5$

Pure bino LSP annihilates ineffectively, and PM is overproduced

Nearly pure Higgsino LSP : Natsumi Nagata's talk 1.

Gravity mediation

- To avoid LSP overproduction, $m_{higgsino} < 1$ TeV is required

2. Higgsino-bino mixed LSP (well-tempered) $m_{\rm bino} \lesssim 1 \text{ TeV} \rightarrow m_{\rm gluino} \lesssim 5 \text{ TeV}$

supergravity gives $B \sim m_{3/2} \sim m_0$

Large $\langle H_{\mu} \rangle / \langle H_{d} \rangle$ is natural

$V = (\mu^2 + m_{H_u}^2) |H_u|^2 + (\mu^2 + m_{H_d}^2) |H_d|^2 + (B\mu H_u H_d + h.c.)$

SUSY breaking terms

 $\tan\beta \simeq 2 \frac{m_{H_u}^2 + m_{H_d}^2 + 2\mu^2}{B\mu} \gg 1$

Stop and gluino search * Decay products include a long-lived charged higgsino $\tilde{H}^0, \tilde{H}^{\pm}$ \tilde{H}^{\pm} \tilde{H}^0 $c\tau_{\tilde{H}^{\pm}} = \text{few} - 10 \text{ mm}$ Natsumi Nagata's talk tree-level and quantum

correction

Note the significant boost : $\frac{P}{=} O(10)$

Slight improvement of sensitivity by displaced vertices or disappearing tracks??

Mhiggsino

susy breaking

Gauge mediation

Gauge interaction

F: SUSY breaking parameter

* Minimal supersymmetric Standard Model

* Stermion masses are not hierarchical automatic

* Unification

+ Avoiding tuning except for the EW scale

there aldered weather abundance wat too large THE MAI WALK MALLEL ADDRUANCE NUL LUDIALYE

Predictable, so less assumptions

no tunable parameter (after EW tuning)

mass scale solely determined by the higgs mass

Gauge mediation

$V = (\mu^2 + m_{H_u}^2) |H_u|^2 + (\mu^2 + m_{H_d}^2) |H_d|^2 + (B\mu H_u H_d + h.c.)$

arises at higher order corrections in the minimal setup

$m_{\tilde{t}} \leq 10 - 15$ TeV

Gauge mediation

Gauge mediation $m_{\tilde{t}} \leq 10 - 15 \text{ TeV}$ $\widetilde{H}\widetilde{H} \to \widetilde{W}\widetilde{W}$ 95% CL Limits $\widetilde{H}\widetilde{H}\to\widetilde{B}\widetilde{B}$ 14 TeV, 0.3 ab⁻¹ $\widetilde{W}\widetilde{W}\to\widetilde{H}\widetilde{H}$ 14 TeV, 3 ab⁻¹ $\widetilde{\mathsf{W}}\widetilde{\mathsf{W}}\to\widetilde{\mathsf{B}}\widetilde{\mathsf{B}}$ 5σ Discovery $\tilde{I}_R\tilde{I}_R \rightarrow LLCP$ 100 TeV, 3 ab⁻¹ $\widetilde{I}_{L}\widetilde{I}_{L} \rightarrow LLCP$ 100 TeV, 30 ab⁻¹ $\widetilde{t}\widetilde{t}^* \rightarrow t \widetilde{\chi}_1^0 \overline{t} \widetilde{\chi}_1^0$ $\widetilde{q}\widetilde{q}^* \rightarrow q\widetilde{\chi}_1^0 \overline{q}\widetilde{\chi}_1^0$ $\widetilde{g}\widetilde{g} \rightarrow t\overline{t}\widetilde{\chi}_{1}^{0}t\overline{t}\widetilde{\chi}_{1}^{0}$ $\widetilde{g}\widetilde{g} \rightarrow q\overline{q}\widetilde{\chi}_{1}^{0}q\overline{q}\widetilde{\chi}_{1}^{0}$ $\widetilde{g}\widetilde{q} \rightarrow q\overline{q}\widetilde{\chi}_{1}^{0}q\widetilde{\chi}_{1}^{0}$ 10 15 20 5 0 Mass scale [TeV]

Gauge mediation

Vecay into gravitino

$c\tau \simeq 10^6 \text{ m} \left(\frac{m_{3/2}}{\text{GeV}}\right)^2 \left(\frac{3 \text{ TeV}}{m_{\text{NLSP}}}\right)^4$

ex. charged track from stau NLSP displaced vertex from bino NLSP

Less assumption because of the

* Minimal supersymmetric Standard Model * Sfermion masses are not hierarchical * Unification * Avoiding tuning except for the EW scale * Thermal dark matter abundance not too large

* Motivation of supersymmetry

* Higgs mass and scalar masses m_0 in the MSSM

* $m_0 \sim 10 \text{ TeV}$

* $m_0 = 100 - 1000 \text{ TeV}$

* $m_0 \gg 1000$ TeV

Outline

Mini-split? Giudice, Luty, Murayama, and Rattazzi (1998) Wells (2003), Arkani-Hamed and Dimopoulos (2004), ... Assume that the SUSY-breaking field is charged

scalars obtain masses by Planck-scale suppressed interaction with the SUSY breaking sector

 $\mathcal{L} = \frac{FF^{\dagger}}{M_{\rm ex}^2} \tilde{q}^{\dagger} \tilde{q}$

gravitino sfermions 100 – 1000 TeV

Mini-split? Giudice, Luty, Murayama, and Rattazzi (1998) Wells (2003), Arkani-Hamed and Dimopoulos (2004), ... gravitino sfermions 100 – 1000 TeV Fãĝ gauginos 1 - 10 TeV SM Higgs 100 GeV

Assume that the SUSY-breaking field is charged (anomaly mediation)

coupling with gauginos is suppressed $m_{gaugino,tree} = 0$ Gaugino masses are given by a quantum effect Randall and Sundrum (1998)

Giudice, Lucy, Murayama, and Rattazzi (1998)

coupling with gauginos is suppressed

$m_{gaugino,tree} = 0$

Gaugino masses are given by a quantum effect (anomaly mediation)

Randall and Sundrum (1998) Giudice, Lucy, Murayama, and Rattazzi (1998)

* Compatible with simple dynamical SUSY-breaking mechanisms

 $m_{\rm SUSY} \propto \exp\left(-8\pi^2/bg^2\right)$ SUSY-breaking field is often charged

* Gravitino decay does not disturb BBN $\tau \simeq 0.1 \sec \left(\frac{100 \text{ TeV}}{m_{3/2}}\right)^3$

* No moduli in the SUSY breaking sector

Mini-split

Anomaly mediation

$m_{\text{bino}}: m_{\text{wino}}: m_{\text{gluino}} \simeq 3:1:10$

 $\propto m_{3/2}$

Correction from Higgsino

Non-thermal wino DM

gravitino decay T = 10 MeV

$\psi_{3/2} \rightarrow \tilde{W} + W$

Ex. $m_{\text{wino}} \simeq 1$ TeV, $m_{\text{gluino}} \gtrsim 2$ TeV

 $\tilde{g}\tilde{g} \rightarrow qq\bar{q}\bar{q}\tilde{\chi}^0\tilde{\chi}^0$

LHC (14 TeV, 3 ab^{-1}) : $m_{gluino} < 3$ TeV **FCC-hh** (100 TeV, 3 - 30 ab^{-1}): $m_{gluino} < 13 - 17$ TeV

FCC-hh will cover part of the parameter space

Guino search

* Decay products include a long-lived charged wino

 \tilde{W}^{\pm} - \tilde{W}^{0}

quantum correction

 $\tilde{W}^0, \tilde{W}^\pm$

* The lifetime of the gluino itself may be long

e.g., Ibe, Matsumoto and Sato (2012)

 $c\tau_{\tilde{g}} = O(1) \operatorname{mm}\left(\frac{4\text{TeV}}{m_{\tilde{g}}}\right)^{5} \left(\frac{m_{0}}{1000 \text{ TeV}}\right)^{4}$

Slight improvement of sensitivity by displaced vertices or disappearing tracks??

Nagata, Otono and Shirai (2014)

$\Delta M_{\rm EW} \simeq 160 { m MeV}$

Displaced vertex search

Higgsino around TeV?

$V = (\mu^2 + m_{H_u}^2) |H_u|^2 + (\mu^2 + m_{H_d}^2) |H_d|^2 + (B\mu H_u H_d + h.c.)$

To avoid too large Higgs mass,

We need $m_{H_d}^2 \ll m_{stop}^2$, which is possible if $m_{H_d}^2$ at a high energy scale is small

supergravity gives $B \sim m_{3/2} \sim m_0$

$m_{H_0}^2(10 \text{ TeV}) \simeq 0.02 m_0^2 + \cdots$

gravitino sfermions 100 – 1000 TeV

collider targets

higgsino 1 – 10 TeV

100 GeV

Higgsino around Tev

Very rich phenomenology

Collider **Dark matter detection**

Natsumi Nagata's talk

• Electric dipole moment

Giudice and Romanio (2005)

* Motivation of supersymmetry

* Higgs mass and scalar masses m_0 in the MSSM

* $m_0 \sim 10 \text{ TeV}$

* $m_0 = 100 - 1000$ TeV

* $m_0 \gg 1000 \text{ TeV}$

Outline

Sfermions are in GUT complete multiplets The effect of heavy higgs is minor

Light Higgsino and gauginos are enough to maintain precise gauge coupling unification

Arkani-Hamed and Dimopoulos (2004)

m_{higgsino} < 1 TeV or $m_{\rm wino} < 3 \, {\rm TeV}$

similar EW-kino phenomenology as mini-split SUSY

Natsumi Nagata's talk

* Supersymmetry remains a well-motivated extension of the Standard Model * Canonical scenarios can be probed by production of sparticles at the FCC-hh

More on gaugino masses

Gaugino masses can receive further corrections

Ex. KSVZ QCD axion model

KSVZ fermions

gluino mass can be even lighter

