European Organization for Nuclear Research Organisation Européenne pour la Recherche Nucléaire

**IT-DSS** 

# EOS/LST 2010 CERN



Acknowledgements for participation, help, contributions & discussions to IT-DSS & ES Group, XROOT project, the ATLAS LST Members and Stephen Gowdy

GDB 12.1.2011

project-eos@cern.ch

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

CFRI

## Demonstrator Goals

**IT-DSS** 

### develop and evaluate potential of EOS storage prototype towards

efficiency

IT

- tunable reliability
- lower operational costs

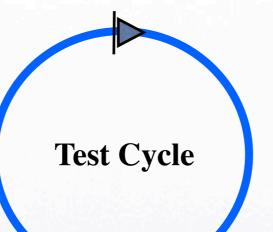
Reliability Flexibility Efficiency Simplicity integrate as grid site into standard framework

gain operational experience & evaluate efficiency running

**ATLAS** 

production jobs

analysis jobs


### Phases & Coordination

### **1** Preparation and pre-testing

- Storage set up and configuration
- ATLAS queues set up and configuration. Uploading test data.

**IT-DSS** 

- DDM functional test
- HammerCloud test (submission analysis jobs)
- Storage configuration tuning (if needed)



### **3** Test Running

- Declare site as 'ATLAS production and analysis' grid site, allow production and analysis jobs brokering to the site

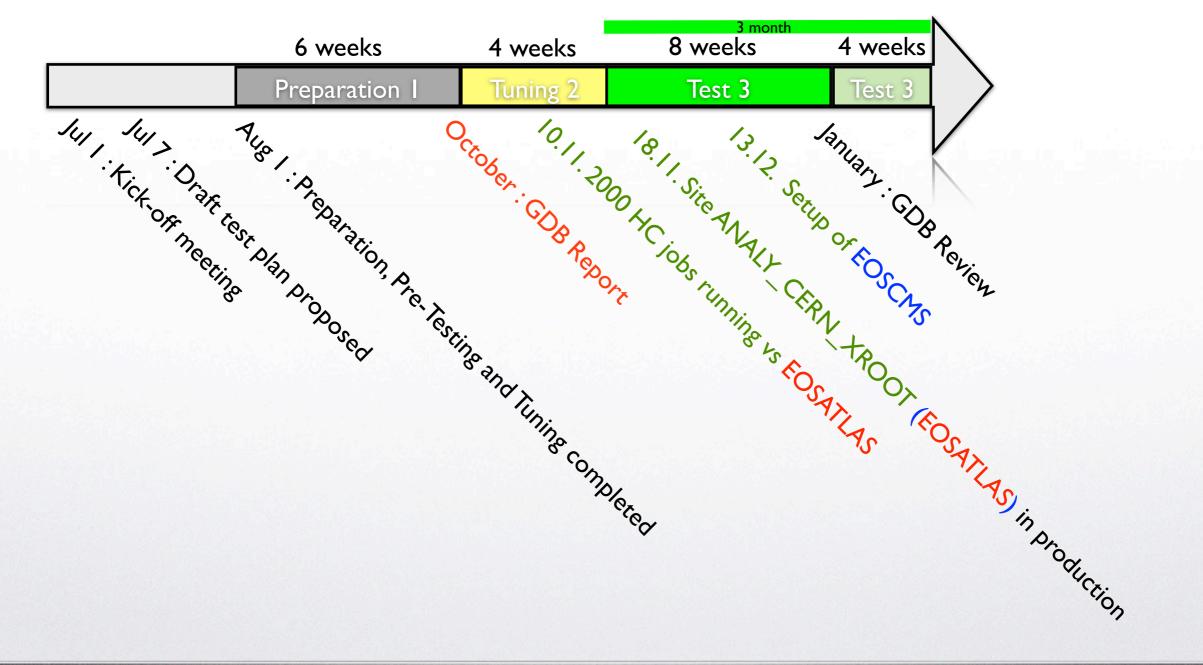
#### 2 Tuning

- Set up ATLAS Grid site
- Upload ATLAS data, conditions & meta-data
- Run large scale HammerCloud test for several days
- Final tuning

### **Operations and Coordination**

- Overall coordination will be done by IT-DSS Group Leader and ADC Coordinator

- LST2010 day-by-day coordination will be performed by 2 coordinators (one from IT-DSS, one from ADC)


- Daily meetings during Preparatory and Tuning steps

- ATLAS Computing shifts will follow site issues during Production step. The procedure may be different from the other sites

- Wash-up common meeting after each phase completion

## Timescale & Milestones

**IT-DSS** 

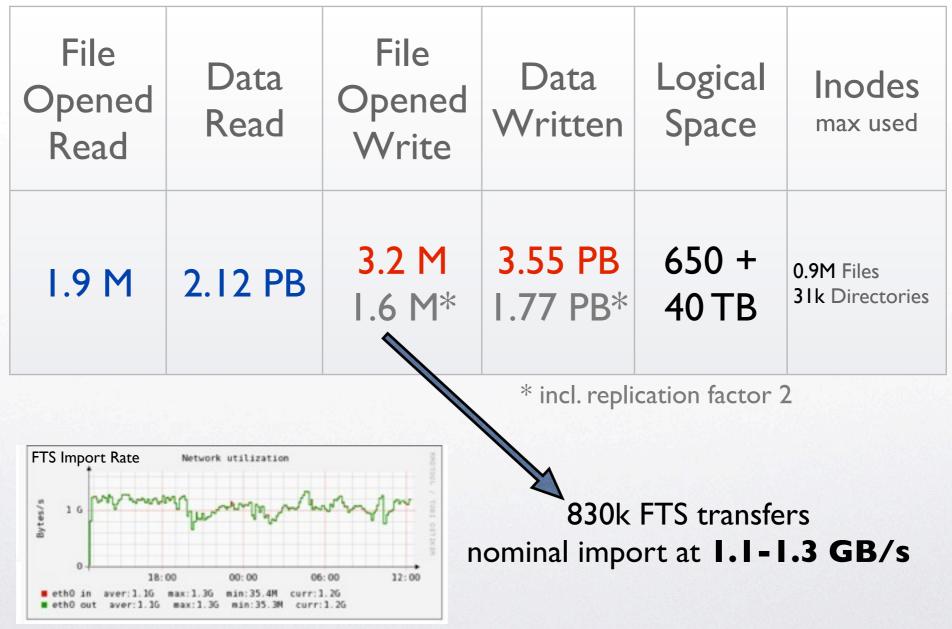


CÉRN

í.

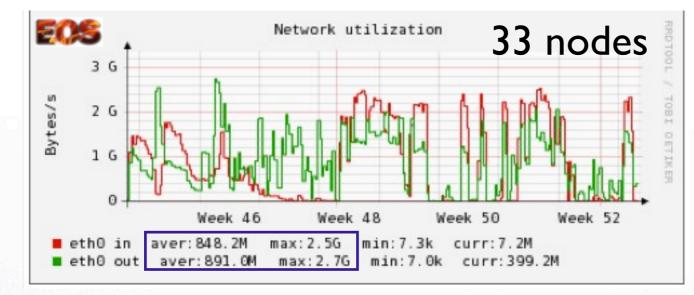
# EOSATLAS Usage

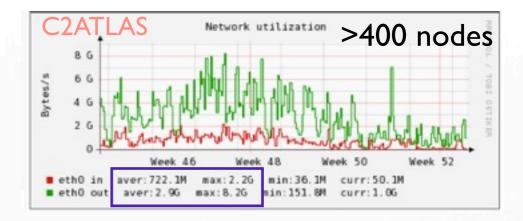
 Used as grid site in production by ATLAS with 500 job slots and 33 disk server [since 18.11.2010]


**IT-DSS** 

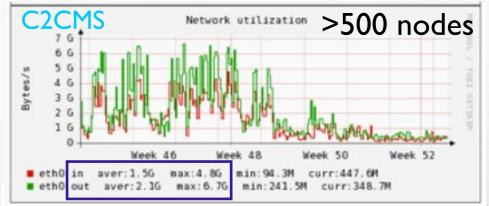
- Dataset Import (2 replicas)
  - via gridFTP-Gateway/SRM-BestMan
  - ~60% preload, ~40% dynamically loaded by PD2P (TI-TI algorithm was tuned using EOS)
- Job Input DB Releases (6 replicas)
  - via xrdcp download
- Job Input Data
  - via xrdcp download
- Job Output Data (3 replicas)
  - via SRM/gridFTP

# EOSATLAS Usage


**IT-DSS** 


### 1.11.2010-05.01.2011 66 days

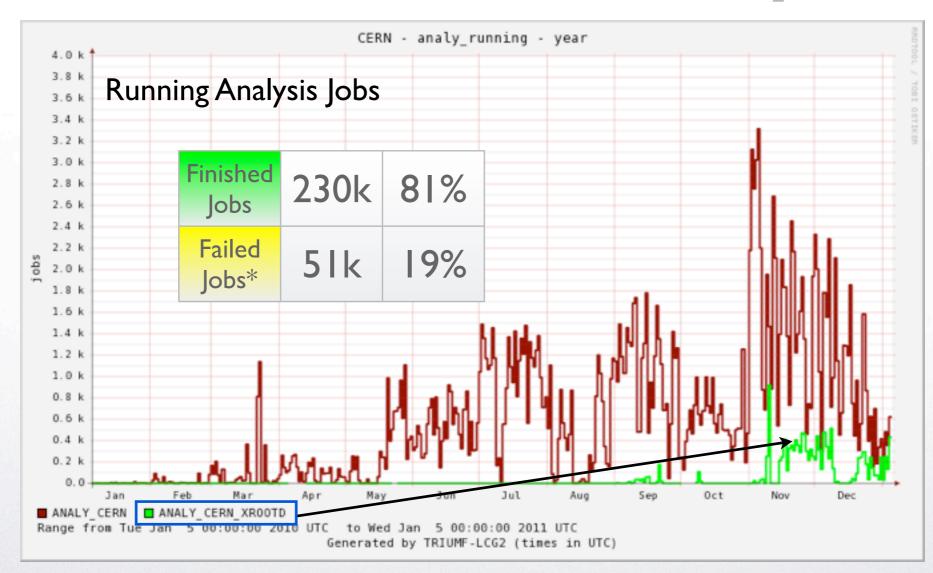



# EOSATLAS Usage

**IT-DSS** 






| Scale Comparison |         |       |       |  |  |  |  |  |  |  |
|------------------|---------|-------|-------|--|--|--|--|--|--|--|
| EOS              | C2ATLAS | C2CMS | C2ALL |  |  |  |  |  |  |  |
| Nodes            | 8%      | 7%    | 2%    |  |  |  |  |  |  |  |
| IO Read          | 30%     | 42%   | 11%   |  |  |  |  |  |  |  |
| <b>IO</b> Write  | 110%    | 56%   | 28%   |  |  |  |  |  |  |  |



EOS Server well tested: avg. running at 25% of available IO bandwidth

# **EOSATLAS** Analysis

**IT-DSS** 



\* failed jobs dominated by application/user induced errors

### Handling of Operational Problems & Hardware Failures

**IT-DSS** 

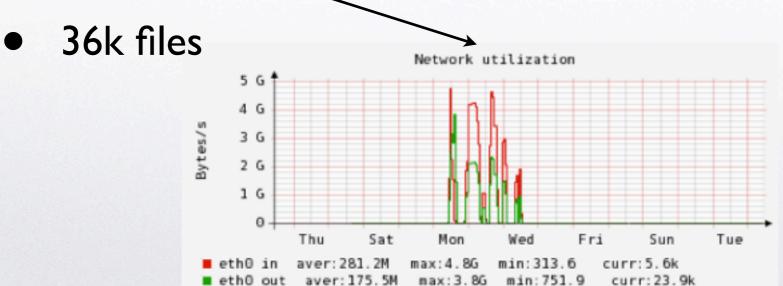
### GGUS

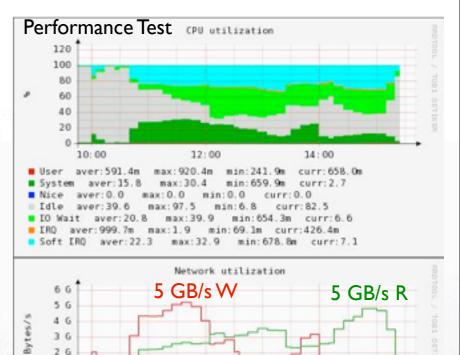
5 Tickets found

| Ticket-ID | Туре | Concerned VO | Notified Site | Resp. Unit | Status      | Date       | Last Update      | Info                                               |
|-----------|------|--------------|---------------|------------|-------------|------------|------------------|----------------------------------------------------|
| 65826     | Team | atlas        | CERN-PROD     | ROC_CERN   | in progress | 2011-01-03 | 2011-01-05 13:49 | failed transfers from PIC_SCRATCHDISK to CERN-PROD |
| 64939     | Team | atlas        | CERN-PROD     | ROC_CERN   | verified    | 2010-12-03 | 2010-12-09 17:00 | CERN-PROD_EOSDATADISK transfer failures            |
| 64247     | Team | atlas        | CERN-PROD     | ROC_CERN   | verified    | 2010-11-15 | 2010-11-17 07:48 | many file transfers failing from NDGF to CERN-PROD |
| 63926     |      | atlas        | NDGF-T1       | NGI_NDGF   | verified    | 2010-11-04 | 2010-12-05 17:08 | gridftp transfers NDGF_T1_DATADISK to CERN-PROD_EO |
| 63901     | Team | atlas        | CERN-PROD     | ROC_CERN   | solved      | 2010-11-04 | 2010-11-30 09:13 | Transferences for CERN-PROD_EOSDATADISK            |

SRM & gridFTP ports had to be opened in firewall for external user and NDGF access

ENOSPACE: FTS transfers scheduled on full or unavailable disks


### **HW Failures**


25 hardware failures tracked (~20 disks to be exchanged, few backplane and one power supply failure).

# EOS Setup for CMS

**IT-DSS** 

- I0 x I0 Gbit Server 420 TB
  - xroot only access (no SRM)
- Import from C2CMS via xrd3cp
  - 120 TB (x2) -





1 G 0 10:00 12:00 14:00 eth0 in aver:1.8G max:5.2G min:10.5M curr:17.7M eth0 out aver:2.6G max:4.8G min:22.9M curr:1.1G

Tests have just started ...

## ATLAS Feedback

**IT-DSS** 

- ATLAS expressed satisfaction about stability, efficiency & performance of EOS as grid site storage
  - besides peculiarity of CERN cloud no extra configuration/patches
    - 'standard' protocols SRM, gridFTP & xroot + X509 authentication
  - high-speed wide area import from world wide distributed sources at 1.1 GB/s with internal realtime replica
    - EOS subscribed automatically to 'hot' datasets worldwide via PD2P
- ATLAS asked to extend test to run two more month with PD2P subscription

### Next Steps, Enhancements & future directions

**IT-DSS** 

- GDB/MB feedback
- Evaluate analysis with remote access
  - via remote access protocol (xroot)
  - via POSIX and FUSE mount in job sandbox requires Ixbatch deployment (Buff. Cache/Kernel read ahead)
- Capture initial operational experience and re-iterate on EOS software architecture & implementation

# Mid-/Longterm Future

**IT-DSS** 

- CERN CC has a lot of existing capacity which can be exploited with adapted software on client & server side (experiment usage/framework & storage system)
  - In the grid environment experiments use only a reduced common subset of storage functionality
  - Aim to significantly increase the efficient utilization of existing resources
  - Tape should be linked close to EOS as a big space provider
  - Investigate other deployment models which may lead to further HW consolidation and TCO savings
    - disk server participates as batch node
    - batch node participates as disk cache





- EOS Demonstrator is running successfully since two months in a production environment under high load
- Valuable input collected during demonstrator test about functional and operational requirements & needs for the future
- EOS has shown some of its potential to achieve high quality service with increased resource efficiency
  - monitoring to further quantify its benefits has to be put in place
  - ATLAS use case as grid site storage does not exploit fully its capabilities (namespace performance, quota ...)
- Propose to continue the already existing close collaboration with experiments