
13TH International School of

Trigger and Data Acquisition

13-22 June 2023

Istanbul (Turkey)

ISOTDAQ 2023

Lab Book

ISOTDAQ 2023

Index

Index 1

Lab 1: VMEbus programming 3

Lab 2: A simple Trigger Exercise 5

Lab 3: Detector and Trigger 16

Lab 4: A small physics experiment 23

Lab 5: FPGA programming 30

Lab 6: Micro TCA 37

Lab 7: System Development using LabVIEW 51

Lab 8: ADC basics for TDAQ 66
Lab 9: Networking for Data Acquisition Systems 78

Lab 10: Microcontrollers Exercise 86

Lab 11: Storage Exercise 93

Lab 12: DAQ Online Software 97

Lab 13: System on Chip (SoC) FPGA 105

Lab 14: Introduction to GPU programming 128

1

ISOTDAQ 2023

The main page of the 2023 ISOTDAQ School is:

https://indico.cern.ch/event/1182415/

For up-to-date information on times and places, please see:

https://indico.cern.ch/event/1182415/timetable/

Local Organising Committee

● Aytül Adıgüzel

● Şeyma Esen

● Berare Göktürk

● Taha Batuhan İlhan

● Oğuz Koçer

● Ahmetcan Sansar

CERN Organising Committee

● Paolo Durante

● Markus Joos

● Hannes Sakulin

● Barthélémy von Haller

● Kate Ross (Administrator)

Laboratory Usage Note

Maintaining a safe working environment in the laboratory is paramount. You should at all times

act in a safe and responsible manner. In particular, note that you must not eat, drink, or act

unprofessionally in the Laboratory. Any safety concerns should be raised with the local

organization committee.

2

ISOTDAQ 2023 Lab 1: VMEbus programming

Lab 1: VMEbus programming

Introduction

For the moment forget what you (hopefully) have learnt about the VMEbus protocol and the

details of the H/W. For this exercise you have to look at a VMEbus slave as if it was a piece of

memory in your PC. The purpose of this exercise is to demonstrate that in some respects there is

little difference between internal and external memory; as far as programming is concerned. The

exercise also shows the differences between the two types of memory.

What is important to understand is that the VMEbus memory has to be mapped into the (virtual)

address space of a user process before it can be accessed. This ties 3 busses together: CPU, PCI and

VMEbus as shown in the picture below.

The first part of the exercise is to figure out how to create the appropriate mappings for the type

of VMEbus access that you have to do. Then you actually transfer the data. This is done in single

cycle mode which means that the CPU controls the data transfer.

In the second part of the exercise you will perform block transfers (DMA). This requires a different

programming technique since it is not the CPU that moves the data but an external device (a DMA

controller). Such DMA controllers are not VMEbus specific. You find them everywhere (e.g. in

Network interfaces, disk controllers, USB devices, etc.).

3

ISOTDAQ 2023 Lab 1: VMEbus programming

Before you start you should be able to answer these questions:

1) What does the acronym A24D32 mean?

2) What is endianness and how do you deal with it?

3) What are the advantages of block transfers?

Instructions

1. Open the file solution.cpp with an editor of your choice (vi, nedit).

2. Add the missing code to “solution.cpp” to execute the VMEbus cycles listed below:

1. Write 0x12345678 to address 0x08000000 in A32 / D32 mode. Use the "safe" cycles

2. Read the data back from address 0x08000000 and compare it

3. Write 0x87654321 to address 0x08000004 in A32 / D32 mode. Use the "fast" cycles

4. Read the data back from address 0x08000004 and compare it

5. Write a block of 1 KB to address 0x08001000 in A32 / D32 / BLT mode. You have to

prepare the data in a cmem_rcc buffer.

6. Read the data back from 0x08001000 in A32 / D64 / MBLT mode and compare it

3. Run “make” to compile the application

4. Run “solution” and catch the VMEbus transfers with the VMEtro VBT325 analyser

Good practices:

● Check all error codes

● Do not forget to undo all initialization steps (return memory, close libraries) before you exit

from an application

4

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

Lab 2: A simple Trigger Exercise

Introduction

Figure 1: NIM modules.

This is a basic exercise based on the trigger lecture. It introduces all the elements and concepts

needed in exercise 3 and 4. The available NIM modules are shown in Fig.1. The exercise is

composed of 4 parts. At each step, look at the corresponding schema and follow the instructions.

A trigger is given by the transition of a signal from the logical 0 to 1. Before setting up any trigger

system, you must have decided the levels corresponding to these logical levels and all the

components of the system need to be correctly configured.

5

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

Figure 2: Scheme of threshold and constant fraction discriminators.

Part 1a: Threshold Discriminator

The Signal Generator is pre-configured to provide a triangular pulse with a period of 300 µs. Look

at the signal (Channel Output) with the oscilloscope (CH1), using the Trigger Output of the

generator as oscilloscope trigger (EXT). The Trigger Output is TTL signal.

What do you expect?

Why do we use it?

Now try to characterize the signal:

Leading edge time:

Trailing edge time:

Width:

Using the LEMO cables, try to implement the schema shown in the left part of Fig. 2, i.e.:

● Split the generator output signal: connect the two parts to the input of the Threshold

Discriminator and to the oscilloscope.

● Connect one output signal of the discriminator to the scaler module and a second output

to the oscilloscope (CH2).

6

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

We have set-up a simple trigger system: you have a digital answer based on the amplitude of a

signal. Reproduce the oscilloscope display shown in Fig. 3 and observe the amplitude of both the

signal and its corresponding trigger.

Can you modify their amplitude?

Figure 3: Input signal and threshold discriminator output.

The threshold set on the discriminator can be measured with a Voltmeter (x10 output) and

changed with a screwdriver. Change the threshold value: observe the behavior of the discriminated

signal on the scope and its rate on the scaler.

Can you relate them to the threshold values?

In real experiments, how is the best threshold value found?

7

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

Part 1b: Threshold Discriminator, the jitter

Using the above set-up, set the discriminator threshold to 60 mV and change the amplitude of the

input signal.

What is the effect on the discriminated signal?

How does it affect a timing measurement?

Measure the discriminated signal delay with respect to the reference as a function of the

amplitude of the input signal (-100, -150, -200, -250 mV) and fill up Table 1 with your numbers.

Input signal amplitude (mV) Threshold D (ns) CFD (ns)

100

150

200

250

Table 1: Measured delays on the discriminated signal with respect to reference.

Part 2: Constant Fraction Discriminator (CFD)

Using the above set-up, set the discriminator threshold to 60 mV and change the amplitude of the

input signal.

Now use the Constant Fraction Discriminator to make a trigger from the generator signal and

implement the layout shown in the right diagram of Fig. 2.

Using the Voltmeter and the screwdriver, set these CFD parameters:

● threshold (T): 60 mV Measure with Voltmeter (x10 output)

● walk (Z): 2 mV Measure with Voltmeter

● delay (D): 80 ns Set with delay module + 2x10ns cables

8

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

Connect the CFD monitor output (M) to the scope CH2 and reproduce Fig. 4.

Figure 4: Input signal and CFD monitor output.

Figure 5: Input signal and CFD output.

9

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

Can you recognize the CFD technique?

What is the effect of varying the value of the delay D?

Now connect the CFD output to the scope (CH2) and change the amplitude of the input signal.

What happens to the output of the discriminator?

Measure the discriminated signal delay with respect to the reference as a function of the

amplitude of the input signal (-100, -150, -200, -250 mV). Fill up Table 1 with your numbers.

Compare the results with the previous measurements.

Can you see the advantage?

Can you make the CFD behave like a normal threshold discriminator?

Which configuration parameter has to be modified?

Part 3: Making a timing coincidence

We now try to simulate the coincidence of two different trigger signals, in a simplified way. For

that, use an additional output of the signal generator, which is configured to generate a triangular

pulse similar to the first one. Use a standard threshold discriminator unit (attached to ch. 2 of the

generator) and a CFD (ch. 1) to discriminate both signals, as described in Fig.6.

10

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

Figure 6: Coincidence layout.

We now have two independent trigger signals with similar characteristics. Look at

them in the scope.

Which parameters are important when making a coincidence?

Use one unit of the Coincidence Module, which is able to generate the logical AND of its input

signals. The module has two outputs: OUT and LIN-OUT.

Can you guess the timing behaviour of the AND output?

When are you expecting the AND output to rise?

The Scaler Module is a simple and useful tool in a trigger system: it allows you to simply count the

triggers and verify if your system is behaving correctly. Use the scaler to measure the counting rate

of your coincidence and try to answer these questions:

Can you count any trigger? How can you recover the coincidence rate?

After your adjustments, what is the width of the coincidence signal?

11

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

Can you explain the different behavior of the OUT and the LIN-OUT signals?

Which is better to use in a real trigger system?

How can you preserve good trigger efficiency if one of the signals has a large jitter?

Which is the drawback?

Figure 7: Top: busy logic schema with readout processing time simulated via a dual timer

module. Bottom: time diagram of signals at the discriminator output (1), after the veto (2) and

at the coincidence output (3).

12

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

Part 4: Trigger veto and dead-time

A busy logic can be implemented using the coincidence module and a Dual-Timer Module which

simulates a readout system with a fixed processing time (readout dead-time). Configure one stage

of a dual timer module to generate signals with 10 ms width. Then implement the busy logic in a

second stage of the coincidence unit as shown in Fig. 7

● one input of the coincidence unit is the trigger signal;

● to simulate the start of the readout, and so the trigger ACCEPT signal sent to the readout

system, use the output of the busy coincidence to drive the timer module (START);

● use the output of the timer as the VETO of the busy coincidence: this is the BUSY signal

sent back to the trigger system;

● connect the trigger signals before and after the busy logic to the scaler and check the

correct logic

You can easily make a rate measurement configuring the Scaler to work with a time gate of 1s with

a GT+CLR configuration. Compare the trigger ACCEPT rate and the readout rate (after the BUSY) on

the scalers.

How do they relate to the timer module setting?

Can you reproduce the numbers using the LIN-OUT of the coincidence unit?

Alternatively you can make an AND between the trigger and the output of the timer (with inverted

logic) and not as a veto.

Where is the difference in the logic? What risk are we taking?

Can you explain the behaviors observed disabling either one or the other input

of the coincidence unit?

13

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

Appendix: the Constant Fraction Discriminator

Figure 8: CFD function diagram.

The CFD functional diagram is shown in fig. 8. The input signal is split in two different

discrimination branches, whose results are then merged by the final AND gate. The top branch is a

standard threshold discriminator, where the input signal is compared against a (configurable)

threshold Thr.

The bottom branch instead implements the constant fraction technique. Technically, the input

signal is split: one copy is delayed, while the other is attenuated by a factor of 5. The two copies

are then subtracted and the final result is compared with a threshold of (close to) zero. In fact, the

zero-crossing time of the resulting signal in nearly independent from the input signal leading edge

gradient (i.e. the source of time jitter in a standard threshold discriminator).

Figure 9: CFD function diagram.

Fig. 9 shows in detail the signals in the bottom branch of the CFD. The input pulse (dashed curve) is

delayed (dotted) and added to an attenuated inverted pulse (dash-dot) yielding a bipolar pulse

(solid curve). The output of the bottom branch fires when the bipolar pulse changes polarity which

is indicated by time tcfd. From a practical point of view, a small threshold, as close as possible, is

actually used in the final comparator of

14

ISOTDAQ 2023 Lab 2: A simple Trigger Exercise

the bottom branch. This is needed to avoid fake signals possibly caused by noise. Such a small

threshold is normally called walk (Z).

Figure 10: CFD function diagram.

In order to complete the CFD description, the merging of the top and bottom branch signals has to

be considered, with the help of fig. 10. In the top branch, the threshold discriminator fires at time

thi, that depends on pulse leading edge characteristics. The bottom branch instead fires at a time

tcfd, as discussed above, which is almost constant, due to the delay introduced in the bottom

branch, normally tcfd > thi. Therefore, the overall CFD, defined as the signal generated by the final

AND gate, will fires at tcfd, achieving both our requirements:

● only select signal above a given amplitude Thr;

● provide an output trigger whose timing is independent from input signal amplitude.

As can be seen in the above figure, the CFD operating principle is not retained for all the possible

combinations of configured delay, threshold and input signal amplitude. As the top branch timing

depends on the signal amplitude, a small enough signal can make it fire at a time tlo > tcfd. In this

case the CFD will behave like a normal threshold discriminator, as the output AND gate will be

driven by tlo.

15

ISOTDAQ 2023 Lab 3: Detector and Trigger

Lab 3: Detector and Trigger

Scintillators, trigger logic, input to readout modules (ADC & TDC)

Introduction

This exercise consists in building the trigger logic and the input signals to the VMEbus readout

modules for a detector (exercise #4) using the experience with NIM electronics acquired in exercise

#2. The detector comprises two scintillation counters detecting cosmic rays (muons). A schematic

diagram of a scintillation counter is shown in Figure 1. When a charged particle traverses the

scintillator, it excites the atoms of the scintillator material and causes light (photons) to be emitted.

Through a light guide the photons are transmitted directly or indirectly via multiple reflections to

the surface of a photomultiplier (PM), the photocathode, where the photons are converted to

electrons. The PM multiplies the electrons resulting in a current signal that is used as an input to

an electronics system. The PM is shielded by an iron and mu metal tube against magnetic fields (of

the Earth). The scintillator and light guide are wrapped in black tape to avoid interference with

external light. The scintillation counter setup is shown in Figure 2.

The NIM modules used to build the trigger and the input to the readout system and provide the

high voltage are shown in Figure 3.

Outline:

The aim of the exercise is to get an understanding of the detector and trigger logic used in Exercise

4. The signals from two scintillation counters are analyzed using an oscilloscope and transformed

into logic NIM signals that allow to build a trigger based on a coincidence between the signals. The

coincidence rate i.e. the rate of cosmic muons is counted using a scaler and the charge content of

the scintillator signals is measured on the oscilloscope. In addition the inputs to the readout

modules (QDC and TDC) are set up.

A schematic diagram of the full trigger and readout electronics is shown in Figure 4.

16

ISOTDAQ 2023 Lab 3: Detector and Trigger

Figure 1. Schematic diagram of a scintillation counter.

Figure 2. Scintillation counter setup

17

ISOTDAQ 2023 Lab 3: Detector and Trigger

Figure 3. NIM trigger electronics. From left to right: scaler (counter), discriminator, coincidence
unit, delay modules and high voltage power supply.

18

ISOTDAQ 2023 Lab 3: Detector and Trigger

Figure 4. Diagram of the electronics for the detector, trigger and readout of the scintillator counter
setup.

Work plan:

Note: whenever there are two parallel outputs from a (NIM) module one needs to make sure that

they are both cabled, i.e. either terminated with 50 Ohm or connected to another unit. This

ensures that the pulses have the correct NIM voltage levels: 0 and -0.8 Volts.

1. Install the scintillation counters close to each other with maximum overlap between the

scintillator areas.

2. Check that the scintillator photomultiplier bases are connected to the N470 NIM high

voltage supply.

3. Switch ON the NIM crate.

4. Connect an output from scintillator 0 (the upper one) to an oscilloscope (10ns LEMO),

terminate the other output with 50 Ohm.

5. Set the nominal high voltage on scintillator 0 using channel 0 of the N470 HV supply. The

voltage is marked on the label glued onto the base. Refer to 0 at the end of this exercise for

a short guide to using the N470 HV supply.

6. Look at the signal on the oscilloscope (volts/div ~ 50 mV, time/div ~ 20ns). What is the

maximum voltage of the signal?

19

ISOTDAQ 2023 Lab 3: Detector and Trigger

7. Connect the cable to the input of the first channel of the discriminator.

Connect an output to the oscilloscope (0.5 Volts, 50 ns) and adjust the pulse width to around 100 ns
using a small screwdriver (terminate the other output with 50 Ohm), see

8. Figure 3.

9. Connect the output to the first channel of the NIM scaler (N415) using a short LEMO cable

(1ns).

Set the discriminator threshold to 50 mV: adjust the voltage on the test point using a DC voltmeter
and a small screwdriver, see

10. Figure 3. The voltage is 10 times the threshold value i.e. the voltage should be around 0.5

Volts. This step may require teamwork.

11. What is the scaler rate?

12. Vary the threshold around 50 mV and check the variations in scaler rate.

13. Repeat points 4 to 11 above for scintillator #1 (the lower one), connecting this scintillator in

addition to the one already connected.

14. Given the scaler rates measured above, what is the probability of random (unphysical)

coincidences between pulses from the two scintillators?

15. Connect an output from each of the two discriminator channels to the oscilloscope and

check that they have a timing overlap i.e. are coincident.

16. Connect the cables from the discriminators to the first inputs of the coincidence unit

(LeCroy 465) using short LEMO cables (1ns).

17. Connect an output from the coincidence unit to a scaler input. What is the rate? Given that

the rate of cosmic muons is about 100 per second per square meter, does the rate make

sense?

18. Connect an output of the coincidence unit to channel 1 of the oscilloscope.

19. Connect the (other) analogue output from scintillator 0 to a delay unit (LEMO 10ns) and the

output of the delay unit to channel 2 of the oscilloscope.

20. Using channel 1 as a trigger, observe the analogue signal on channel 2. Channel 2 will then

show the scintillator signals for the cosmic muons. Assuming that the signal is triangular,

what is the charge of the signal? See Figure 5. Note down the charge. You will need it

again in exercise 4

21. Adjust the delay unit such that the analogue signal falls within the NIM pulse from the

coincidence unit: inputs to the charge to digital converter (QDC) in Exercise 4 are now ready

(analogue signal and gate).

22. Repeat point 21 for scintillator 1.

23. Connect a cable from the first discriminator to channel 2 of the oscilloscope and check the

timing with respect to the output from the coincidence (channel 1). The signal from the

discriminator should precede the coincidence. Similarly for the second discriminator. The

inputs to the time to digital converter (TDC) in Exercise 4 are now prepared (trigger and

20

ISOTDAQ 2023 Lab 3: Detector and Trigger

timing signals).

24. The signals from the discriminators are sometimes about twice as long as expected. What

could the reason be?

21

ISOTDAQ 2023 Lab 3: Detector and Trigger

Appendix 1: Short User’s Guide to the CAEN N470 High Voltage Supply

This is a short list of the most common operations for the N470 High Voltage Supply used in

Exercises 3 and 4. The manual can be found at

http://www.caen.it/nuclear/product.php?mod=N470#

● To select a channel: F0*(channel number)* e.g. F0*0*

● To set the High Voltage on the selected channel: F1*(type value)* e.g. F1*2000*

● To read the voltage on the selected channel: F6*

● To read the current on the selected channel: F7*

● To turn the selected channel ON: F10*

Notes:

The maximum voltage on the channels has been set to around 2300 Volts (on the potentiometers).

These can be checked via F13*. The current limits have been set to 2mA (via F2*).

Appendix 2 : Charge of scintillation counter current pulse

Figure 5. Input to the oscilloscope from a scintillation

22

http://www.caen.it/nuclear/product.php?mod=N470

ISOTDAQ 2023 Lab 4: A small physics experiment

Lab 4: A small physics experiment

Detector, trigger and data acquisition

Introduction

This exercise comprises all the components of a typical experiment in high energy physics: beam,

detector, trigger and data acquisition. The “beam” is provided by cosmic rays (muons) and the

detector consists of a pair of scintillation counters, see Figure 2 in Lab 3. The trigger logic, built

from NIM electronics, forms a coincidence between the signals from the scintillation counters

which indicates that a muon has traversed the detector, see Figure 3 in Lab 3. A data acquisition

system based on VMEbus is used to record the pulse heights from the scintillation counters and

measure the time of flight of the muon. The VMEbus crate is shown in Figure 6 and the VMEbus

modules shortly described in Appendix 1, Appendix 2 and Appendix 3. The overall run control and

monitoring is provided via software running on a (Linux) single board computer (SBC).

Outline

This exercise is a continuation of Lab 3. First, standalone programs are executed to give an

understanding of the QDC and TDC VMEbus modules. A full DAQ system is then run on a

multi-processor configuration, with the readout, run control, GUI and infrastructure on a VMEbus

SBC. Event rates and dumps are examined. An event monitoring program produces histograms of

the QDC and TDC channel data which allow to compute the charges of the input signals to the QDC

and the speed of the cosmic muons.

23

ISOTDAQ 2023 Lab 4: A small physics experiment

Figure 6. VMEbus data acquisition system: SBC (Single Board Computer), TDC (Time to Digital
Converter, Trigger Module (CORBO), QDC (Charge to Digital Converter)

24

ISOTDAQ 2023 Lab 4: A small physics experiment

Work plan

● Verify that the detector is working i.e. the scaler counts for scintillator 0, scintillator 1 and

the coincidence are counting such that the TDC and QDC receive signals (note for the tutor:

if the coincidences are not counting, remove the CORBO busy from the trigger coincidence

by pushing the button).

● Login to the SBC as user daqschool, password g0ldenhorn
● Start a Terminal window

● Go to TDAQ directory: cd ~/TDAQ and run the command source
./setup_RCDTDAQ.sh to define the environment

● Run the program v1290scope which is a low-level test and debug program for the CAEN

V1290 TDC

1. Run command: v1290scope (Use defaults for the command parameters)

2. Use VMEbus base address = 0x4000000
3. Dump and decode the registers (option 2). Is data ready? (bit DREADY in the status

register). What are the values of the match window width and the window offset?

See Appendix 1.

4. Configure the TDC (option 3)

5. Read an event (option 5). How many words are read? (Check in the global trailer).

What are the values of the TDC measurements (in ns). Do they make sense? See

Appendix 1.

6. Exit from the program by choosing menu option 0.

1. Run the program v792scope which is a low-level test and debug program for the CAEN

V792 QDC

1. Run command: v792scope (Use defaults for the command parameters)

2. Use VMEbus base address = 0x0
3. Dump and decode the registers (option 2). Is data ready? Check also the LED on the

module.

4. Read an event (option 5). How many words are read? Which channels have data

and which are pedestal (empty) values?

5. Exit from the program by choosing menu option 0.

● We now run the full DAQ system

1. Start the DAQ system: ./setup_RCDTDAQ.sh start. This script will read the

configuration database and start a number of processes on the server: run control,

GUI and a number of infrastructure SW components. This is a somewhat long

procedure and should result in a message 'OK!'.

2. Now start a GUI display: ./start_Igui.sh. The "folders" in the infrastructure

panel should be green! You may need help from the tutor here ...

3. We now go through the run states in order to start a run. But first please obtain a

'Control' access by selecting the 'Control' radio button in the top menu 'Access

Control'. The initialize button should become active. Now, click on INITIALIZE and

then wait for the RCDApp (in RCDSegment) to reach the INITIAL state. The readout

application is now loaded on the VMEbus processor.

25

ISOTDAQ 2023 Lab 4: A small physics experiment

4. Click the CONFIG button followed by OK on the "Remember to ..." dialog box. This

configures the VMEbus modules, the CORBO, QDC and TDC.

5. If you don't see the DFPanel tab close to the top of the GUI, click LOAD Panels and

load the first panel: DFPanel should now appear in the bar above the Run Control

panel.

6. Click START in the control panel (on the left)

7. Data taking should now start. Click on the DFPanel and the L1 check-button to

display the event rate. Is it what you would expect after Lab 3? Check also the LEDs

on the VMEbus modules (the event rate is computed by the Information Service (IS)

which periodically sends a command to the Readout Application to obtain the rate

which is then retrieved by the GUI).

● Event Monitoring

This part demonstrates event monitoring. An event monitoring program obtains a sample

of events from the readout application and analyses them, in this example by producing

histograms of the values from the QDC channels as well as the time difference between the

two TDC values. The histograms can then be viewed via the GUI. The code for the

monitoring program can be found in ~/RCDTDAQ/RCDMonitor/
1. Open another terminal window.

2. Run cd ~/TDAQ
3. Run source ./setup_RCDTDAQ.sh to define the environment.

4. Run the event monitoring task: ./event_dump.sh -e -1
(-1 means to run forever. I you want only one event, please change it to 1.). Once

you have seen the raw data output of the even_dump you can terminate this

application with Ctrl+C.

5. The first nine words of the data constitute an Event (ROD) header. The following

words are the data from the QDC and the TDC. Do you recognize the data?

6. On the terminal start the monitoring program by executing monitor. This program

monitors data, like the event_dump program, publishing measurements to the

histogramming service.

7. In the GUI click on the OH button (Online Histogram). Click on Histogram Repository,

partRCDTDAQ, RCDMonitor. Double click on the histograms to view them.

i. Alternatively, using a new terminal execute source
./setup_RCDTDAQ.sh followed by ./start_ohp.sh. This is the

online histogramming presenter. In the panel Histograms (on the left) select

SCMonitor to view TDC histograms or RCDMonitor to view also the QDC

histograms that we are producing.

8. Record the mean values of the QDC histograms and the mean value of the time

difference histogram. The time histogram is not centered around zero. Why?

9. The charge that you find in the histogram is not the charge delivered from the PMT

to the QDC. What is the reason for that and how can we measure the proper

charge?

26

ISOTDAQ 2023 Lab 4: A small physics experiment

2.

1. The monitoring of the statistics can be reset by stopping and starting the monitoring

program (Ctrl+C to terminate). This restarts the monitoring program described in

point 6.!=b14apg

2. Display the histograms of the QDC channels. Record the pedestal values.

3. Using the formula shown in Appendix 2, compute the mean charges of the signals

from the scintillators. Do they agree with the results obtained in Lab 3?

● We now want to measure the time of flight of the muons between the two scintillators.

1. In the histogram for the data from the TDC we already get a Δt. This value, however,

is not the time of flight of the muon. Why? How can we modify the set-up in such a

way that we can correct the Δt for systematic errors and measure the actual time of

flight?

2. Restart the monitor program from the IGUI per point 10 above. Record the new

mean value of the Δt histogram.

3. What is the difference with respect to the value measured before? Compute the

speed of the cosmic muons.

27

ISOTDAQ 2023 Lab 4: A small physics experiment

Appendix 1: TDC CAEN V1290 VMEbus module

The TDC is operated in trigger matching mode. This means that the TDC measures the time of
arrival of the hits on a channel within a match window. The TDC receives a trigger and the channel
signals as shown in the diagram of the complete setup, Figure 4 of Lab 3 and seen in the picture of
the VMEbus crate, Figure 6. A trigger match window is then defined by a window offset with
respect to the trigger and a match window size as shown in the figure below. The hits occurring on
channel 0 and channel 1 within the match window are recorded by the TDC and the values in units
of 25ps are stored in the memory of the module.

The module is shown in the photo of the VMEbus crate and the manual for the module can be found
at https://www.caen.it/products/v1290n-2esst/ (registration required)

Appendix 2: QDC CAEN V792 VMEbus module

This page explains briefly how to calculate the charge of the input signal to the QDC from the data
readout from the module over VMEbus. The module is shown in Figure 6.

The manual for the module can be found at https://www.caen.it/products/v792/ (registration
required)

The circuitry of a channel is shown below, schematically.

28

ISOTDAQ 2023 Lab 4: A small physics experiment

The switch is closed as long as the gate input signal is present. The input current is the sum of i IN,
the current input to the module via the front panel (from the scintillator), and iPED, a bias (or
pedestal) current which is generated internally. The bias current allows to handle input signals with
small positive voltage components. When the switch is closed during the time of the gate signal, the
input current charges the capacitor C. When the switch is opened again, the voltage across C, v OUT,

is converted by an ADC and stored in the memory of the module. The ADC has the property that
one count = 1 mV.

We now have for the charge of the capacitor:

Q = C * vOUT = 100 (pF) * count (mV) = 0.1 * count (pC)

To compute the charge in the signal input to the channel, corresponding to i IN, we have to correct
for the pedestal value:

Q IN = 0.1 * (count – countPED) (pC)

count = channel data with input signal present

count PED = channel data with input signal removed (i IN = 0)

Appendix 3: CES RCB 8047 CORBO VMEbus trigger module

When a NIM signal is sent to a channel on the CORBO, a bit is set in a status register and an
interrupt on VMEbus is generated, optionally.

The DAQ process on the VMEbus processor can then execute the code to readout the data from the
QDC and TDC modules. In addition, the CORBO generates a busy signal which allows to block
further triggers until the readout code is terminated.

The CORBO module is shown in Figure 6.

29

ISOTDAQ 2023 Lab 5: FPGA programming

Lab 5: FPGA programming

(Ver2014_v01)

INTRODUCTION

In a lot of digital designs (DAQ, Trigger, …) the FPGAs are used. The aim of this exercise is to show

you a way to logic design in a FPGA. You will learn all the steps from the idea to the test of the

design.

In this exercise you will:

● discover how we can do parallel applications

● program a FPGA from the design up to the implementation and the test

The boards used are ALTERA development kit (Figure 1) based on a small FPGA (CYCLONE) with

multiple additional interface components like audio CODEC, switches, button, seven-segments

display, LEDs, ….

and a home-made board (named detector in the following pages) connected to the development

kit with a flat cable (figure 2)

The initial design is loaded into the board.

You will follow the example to understand the design flow. Four exercises are proposed to modify

the original design functionality.

Figure 1: development kit Figure 2: detector

30

ISOTDAQ 2023 Lab 5: FPGA programming

QUICK START

1) Programs used are: QUARTUS (FPGA tool), ModelSim (simulator), LabView

2) Ask the tutor if you have question(s) or problem(s)

EXERCISE (example)

When you switch on the kit, the initial design is loaded into the FPGA.

On the LabView window, you can see the progression of the marker on the detector.

At the same time, you can see on the two 7-segments LED (the right ones on ALTERA kit) the

column and the line number over which the maker is positioned.

DESIGN ENTRY

The design file is named “CII_Starter_Default.bdf” (for all exercises you should work with the same

design file).

The design is divided in three parts:

a) A green rectangle which is used to transmit the information to the computer via the RS232

connection to display the trace on LabView.

b) A blue rectangle in which the design generates the clock and the logic to control the

detector (see Appendix A for detailed functionality).

c) A red rectangle, which contains the logic to detect the trace. You will change the logic in

this rectangle in the following exercises.

The idea of all exercises is to detect a trace. As soon as the trace is detected one 7-segment LED

blinks (the third for the right side).

Click on key0 (Altera kit) to stop the blinking. Now generate another trace.

Spend some time to understand how this design works.

Do you understand it?

COMPILATION

This design is the entry of your logic, it should be compiled now; go to QUARTUS Processing->Start

Compilation.

The design is compiled for the chosen component (Cyclone II).

The compiler executes multiple tasks:

✓ logic optimization

✓ generates a binary file used to program the FPGA (memory array),

✓ extracts the timing between each logic elements used for the timing analyses

31

ISOTDAQ 2023 Lab 5: FPGA programming

✓ generate an output VHDL file used for the simulation

SIMULATION

When the compilation is finished, you can check the design with a simulator. To do this you will use

ModelSim.

Check in the “Project” TAB if there is a file marked with a bleu “?”, if YES, compile it (right-clic on it,

Compile-> compile selected)

In the “Transcript” tab, type ‘source sim.tcl’, ENTER. The simulator opens the waveform, loads the

signals, and starts the simulation.

At the end, stimuli and results are displayed in the wave window.

This simulation emulates a trace starting from the top left and finishing at bottom right describing

a straight line on the detector.

(The tutor will give you some explanations on the results and the signals shown in the waveform)

Remember where the signal OK goes to “TRUE”.

Figure 3: straight line

When you have finished with the simulator type ‘quit –sim ‘ ENTER in the “Transcript” tab.

PROGRAM THE KIT

To download the design on the board, (QUARTUS program) go to on Tools->Programmer (Check

that the Hardware is USB-Blaster, if not ask the tutor).

One file is shown in the window: it is your design. Click on Start .The programmer takes few

seconds. At the end, a message appears to inform you that the programming is completed (or not

successful: in this case usually the board is switched OFF, or the cable is not well connected).

TEST

Draw a straight line from top left to bottom right to see if the design works well!

Now, you are ready to do the other exercises by yourself.

Good Luck!

32

ISOTDAQ 2023 Lab 5: FPGA programming

EXERCISE I

The exercise above uses the graphic to describe the design. In this exercise, we want to do the

same with a text design entry (VHDL).

In the QUARTUS design entry (file “CII_Starter_Default.bdf”), delete the line between inst_graph

and JKFF inst_result and connect the output ‘result’ of “track1”box to the JKFF inst_result with a

line.

● Compile the design

● Simulate the design

○ Go to ModelSim:

✓ Compile the file marked with a ? in the “Project” tab (select the file to be

compiled – Menu Compile-> Compile selected)

✓ Type “quit –sim“ in the “Transcript” tab.

✓ Type “source sim.tcl “ in the “Transcript” tab.

○ Find out the difference with the previous result (check where the signal OK goes to

“TRUE”).

○ Can you explain the difference? Can you modify the file “track1.vhd” to have the

same result as in the previous exercise?

● Download the design

● Test the design

EXERCISE II

In this exercise we want to detect a curved trace.

Figure 4: MISSING Figure 5: example of trace expected.

In the QUARTUS design entry (file “CII_Starter_Default.bdf”), delete the line between output

‘result’ of “track1” box to the JKFF inst_result, and connect the output of the “trck_fnd01” box to

JKFF inst_result.

The “trck_fnd01” box logic detects only a straight trace. Compile the design and do a simulation:

● Compile the design (QUARTUS)

● Simulate the design

33

ISOTDAQ 2023 Lab 5: FPGA programming

○ Go to ModelSim, compile the file marked with a ? in the “Project” tab (click on the

file to compile – Menu Compile-> Compile selected)

○ To simulate:

✓ Type “quit –sim” ENTER in “Transcript” tab to exist any running simulation.

✓ Type “source sim2.tcl” ENTER in “Transcript” tab to start the simulator.

○ A signal OK becomes true if the logic detects the expected trace (here a straight

trace).

In this exercise, you will examine the implementation of the design in the FPGA and see how we

can change the results (max. frequency …)

1. In QUARTUS open TimeQuest (Tools -> TimeQuest timing Analyser)

○ double click on Report Fmax Summary (“Tasks” window)

○ You can see the maximum frequency of each clocks implemented in the design

(Note the max frequency that “scan_clk” can reach)

2. Go back to QUARTUS,

○ Open the partition window (Assignments -> Design partitions window)

○ Right-click on the partition named “trck_fnd01:instzigzag” (Locate-> Locate in Chip

Planner)

Now, you will specify the place where your logic will be implemented:

There is a blue rectangle in the Chip planner (named “trck_fnd01:instzigzag”).

Place it where you want (not at the place where the logic is actually implemented) to implement

the logic at the next compilation.

Compile the design (Quartus), and execute the TimeQuest (see point 1). Normally the maximum

frequency will change.

This give you an idea of the importance of the place of you logic or how to reserve a place if you

work in a team (each person will have a reserved place to implement his logic).

NB: For your information, for each clock of the design, the frequency to reach has to be specified

in a constraint file.

EXERCISE III

The exercise consists to modify the “trck_fnd01” box logic to detect any curve trace as in figure 4.

The trace should start at any pixel in the first line and goes to next line going to a pixel adjacent to

the pixel of the first line and so forth (figure 5).

34

ISOTDAQ 2023 Lab 5: FPGA programming

To help you, you have to change code in the “mask_build” entity (beginning of the

“trck_fnd01.vhd”).

● Compile the design

● Simulate the design

○ Go to ModelSim, compile the file marked with a ? in the “Project” tab (click on the

file to compile – Menu Compile-> Compile selected)

○ To simulate:

✓ type “quit –sim’ ENTER in “Transcript” tab to exist any running simulation.

✓ type ‘source sim2.tcl’ ENTER in “Transcript” tab to simulate in this exercise.

○ A signal OK becomes true if the logic detects the expected trace.

● Download the design

● Test the design

EXERCISE IV

If you have time, you can modify the previous file to detect only the curve trace on right or left

(not in zigzag like the red trace in figure 4).

35

ISOTDAQ 2023 Lab 5: FPGA programming

APPENDIX A

The detector is a matrix of 10 lines and 10 columns (100 pixels). Only one line is activated at a

time.

When a line is activated the result of each column indicates if the marker is over a pixel. Each line

is activated one after the other (0, 1, 2… 8, 9, 0, 1, …) . Each line is activated during 4 clock cycles.

The detection logic checks the result (if pixel is masked by the marker) only during the third clock

cycle (signal “check” in the design).

36

ISOTDAQ 2023 Lab 6: Micro TCA

Lab 6: Micro TCA

Overview

In this exercise you will …

- explore the Micro-TCA technology
- learn about the PCI (express) bus
- write data acquisition software to sample music and display the wave forms

o we have also provided a short primer on binary/hexadecimal vs. decimal
representations in C++ and basic logic operations that you will need for this exercise

Introduction

In this exercise you will work with modular electronics based on the Micro-TCA standard. TCA

stands for Telecommunications Computing Architecture, an architecture that is used in the Telco

industry to provide high-bandwidth, high-availability solutions. Like VME or Compact PCI,

Micro-TCA defines a rack—called shelf in TCA speak—and boards, called Advanced Mezzanine

Cards or AMCs. Both Micro-TCA and its bigger brother Advanced TCA (ATCA) are being used in the

upgrades of the LHC experiments, for instance in the CMS Level-1 trigger where the trigger logic is

implemented in AMCs. Typical shelves have space for 12 AMCs but we will work with a slightly

smaller version. A Micro-TCA Carrier Hub (MCH) performs management functions, such as

monitoring temperatures and regulating fan speed to provide the necessary cooling. A Micro-TCA

shelf may contain a second MCH for redundancy (but we will work with only one). The backplane

contains high-speed serial links that are suitable for transferring data between the boards at rates

of 10 Gb/s or more using various protocols. Typically the backplanes have a single or dual-star

layout with all high speed-links going from each AMC to the MCH slot(s). The MCH then contains a

switch for the desired protocol—in our case PCI Express (PCIe). Other backplane layouts exist with

high-bandwidth links between neighboring AMC slots.

The test setup

We are using a small ELMA Micro-TCA shelf containing:

- a built-in power module and a built-in fan
- a backplane with star and mesh connections
- an MCH by Samway (IP 137.138.63.22)
- an AMC containing a Processor running Linux (IP 137.138.63.15)
- an I/O AMC (AMC-ADIO24) providing digital and analog IO
- optionally, an AMC that can generate a programmable load on the crate

37

ISOTDAQ 2023 Lab 6: Micro TCA

Figure 1. The exercise setup

We will be working directly on the processor AMC. Keyboard, mouse and screen are directly

connected to this card which runs a standard Scientific Linux CERN (SLC) distribution. We will use

the network port of this card to communicate with management port of the MCH.

Get to know the setup

Log into the processor AMC:

User: student (ask your tutor for the pwd)

Explore the system using the Webserver

- open Firefox
- Connect to the Samway MCH webserver at IP 137.138.63.22

You can use the webserver to browse the different Field Replaceable Units (FRUs) in the system.

You can get information about the units, their voltages and temperatures as well as the valid

operating ranges for all these quantities.

Turn on all load groups of the load AMC as shown in the next section. See how the MCH reacts.

Connect to the MCH by telnet

You can see details of the processes in the MCH by connecting to it with telnet (telnet

137.138.63.22). Login: user

38

ISOTDAQ 2023 Lab 6: Micro TCA

Try it. (use command help to display help).

Note that the backspace may not work. In this case you can use ctrl+h.

To see the fan-speed and fan-levels:

sensor cu 1

cu

As an alternative way to looking at the webserver, you can check the operating ranges and current

readings of all sensors via the telnet connection:

sensor amc <slot>

39

ISOTDAQ 2023 Lab 6: Micro TCA

IPMI

The web server communicates with the MCH through IPMI (Intelligent Platform Management

Interface) commands. The MCH either answers to the IPMI commands itself or it forwards the

request to a FRU using a dedicated I2C (Inter-Integrated Circuit, often pronounced I-squared-C)

link.

You can also directly use the IPMI protocol to talk to a card in the sytem. For example, we can

program the load of the load board (produced at CERN) through IPMI. For this we use the program

ipmitool with the following syntax:

ipmitool -I lan -H <ip_address> -U admin -P ADMIN -T 0x82 -t <AMC_address>

-b 7 -B 0 raw 44 7 0 0 <group_number> <action> 0 15

Where:

<ip_address> is your MCH address

<AMC_address> is the target AMC address (Slot1 = 0x72, Slot2 = 0x74, Slot 3= 0x76)

<group_number> is the LED/Load group number from 4 to 11

<action> if 0xff group ON, if 0x00 group OFF

- Try switching on all the load-groups of the AMC
- See the reaction on the temperature of the AMC by repeatedly running the sensor

command (see above)
- When a non-critical threshold is reached the MCH should increase the fan-speed of the

crate
- Check this by running the cu command
- Now you should turn off the load groups quickly to avoid that the system overheats (the

fan is not powerful enough in this crate)

40

ISOTDAQ 2023 Lab 6: Micro TCA

Explore the Backplane

The telnet prompt has commands that allow to display the links of all FRUs.

- bpppc # backplane connectivity
- pcie # PCIe status

Try them. The backplane connectivity information needs some decoding. There is some

information given at the top of the output. Some further information may be found in the Samway

MCH user manual (ask your tutor for a printed copy or find it in /ISOTDAQ/doc/).

AMCs usually have 21 ports, MCHs up to 84 ports. An MCH connects to multiple connectors and is

composed of a number of printed circuit boards stacked on top of each other. The boards are

called the tongues of an MCH. Figures 2 and 3 show the block-diagrammes of the two tongues of

the Samway MCH. Figure 4 shows another block-diagram of a MCH with more functionality

compared to the one used in the test setup.

Ports are grouped into fabrics. MCHs usually provide switches for a certain fabric.

In our test setup, the MCH contains

- a Gigabit Ethernet Switch on Fabric A going to ports 0 and 1 of each AMC.
- a PCI-express Gen3 Switch on fabrics D-G supporting up to 4 lanes, going to ports 4-7 of

each AMC.

Figure 2. Block diagram of the Samway MCH

41

ISOTDAQ 2023 Lab 6: Micro TCA

Figure 4 shows the backplane of our test shelf, figure 5 shows a typical backplane of a larger shelf

with 12 AMCs and redundant MCHs.

Take a look at the backplane with the bpppc command, which AMC has which connectivity? You

can also have a look with the pcie.

For some MCH dedicated tools are available to illustrate the backplane connectivity, figure 6 shows

one such example, the NATView Backplane viewer.

Figure 3. Block Diagram of the NAT MCH.

42

ISOTDAQ 2023 Lab 6: Micro TCA

Figure 4. Backplane of the ELMA blue eco shelf used in the exercise.

Figure 5. Backplane of a typical larger Micro-TCA crate with 12 AMCs.
(not used in the exercise)

43

ISOTDAQ 2023 Lab 6: Micro TCA

Figure 6. NAT Backplane viewer

44

ISOTDAQ 2023 Lab 6: Micro TCA

PCI Express

The MCH in our test system provides a PCIe switch. Cards in the shelf may use it to communicate

with each other. In our system, the Processor AMC communicates with the IO AMC via PCIe. Unlike

its predecessor, PCI, PCI express is a serial link. Up to 32 serial links may be combined to form a

link. Table 1 shows the speeds in Giga-transfers (GT) per second per lane. Physically, PCIe links are

point-to-point, as opposed to a bus topology used in PCI. Data are transferred in packets (like in

Ethernet) with data integrity checks, re-transmissions and flow control. PCIe switches are used to

connect multiple devices to a single controller (called root complex in PCIe). Despite all these

differences in the lower link layers, PCI-express is software compatible to PCI.

Table 1. Speed of PCI-express

per lane per lane

Gen-1 2.5 GT/s 250 MB/s

Gen-2 5 GT/s 500 MB/s

Gen-3 8 GT/s 985 MB/s

Gen-4 16 GT/s 1970 MB/s

To discover the bus structure and devices, you can use the lspci tool.

For example, try: lspci -tv to display the bus in a tree structure

or try options –v and -vv to display detailed information about the devices.

Try to locate the IO AMC. Find its bus address and its base address.

45

ISOTDAQ 2023 Lab 6: Micro TCA

Hot Plugging (demo by your tutor)

In a Micro-TCA system, AMCs may be hot-plugged (i.e. exchanged without switching the shelf off).

We will try hot-plugging the IO AMC card. Since the IO AMC is a PCI device connected to the

Processor AMC, we have to let the Processor AMC know.

Together with the tutor, try these steps (you need to be root on the machine):

- show the PCI devices with lspci
- Pull gently on the black lever
- wait till the blue light is on
- [pull the card out by its lever]
- repeat lspci (did anything change ?)
- [push the card back in]
- wait till the blue light is on
- push the black lever in
- echo 1 > /sys/bus/pci/devices/[address]/remove 
- (address is the address of this device: PCI bridge: PLX Technology, Inc. PEX 8111 PCI

Express-to-PCI Bridge)
- repeat lspci (did anything change ?)
- echo 1 > /sys/bus/pci/rescan
- repeat lspci (did anything change ?)

Build your own digital scope

Now let’s get our hands dirty and do some programming. You will use the Analog-to-Digital

converter on the IO/AMC to repeatedly sample an analog input channel and to display the

waveform of the sampled signal. The A/D converter continuously samples its input at a

programmable frequency. The acquired data may either be polled or transferred to host memory

by Direct Memory Access (DMA).

- First have a look at the provided example program adio_scope.cpp (in
/home/student/amc_adio/src). See how the program maps the address space of the IO
AMC into the Processor AMC’s memory space and how it then addresses the IO AMC’s
registers by simple read and write operations to a data structure. Run the program (from
/home/student/amc_adio/bin) and play with it. You can recompile it by running make in
/home/student/amc_adio.

- The scope should sample Analog Input 0 at 44.1 kHz. Have a look at the documentation
(Hardware Manual) of the IO AMC and find out how to set up the ADC to sample at this
frequency.

- You just need to fill in a few missing pieces in the method acquire_shot():

o First set up the timestamp counter to provide timestamps in microseconds
(register DIVMODE)

o Now set up the IO AMC to sample Analog Input 0 at 44.1 kHz You will need to set
up registers FGENAB and ADCMODE.

46

ISOTDAQ 2023 Lab 6: Micro TCA

o After setting up the card, the program acquires a few hundred samples from the
ADC by reading register ADC0ACT.

o You need to fill in code to decode the timestamp and voltage from the value read
from register ADC0ACT.

o The program produces a file with lines of two columns, containing a timestamp in
microseconds and the voltage in volts (separated by a space).

- Build & run the program and have a look at the timestamps. Verify if the make
sense. Is polling fast enough to do a scope working at 44.1 kHz?

- A ROOT program to plot you file is available. So you don’t need to worry about producing
the graphics. The program will let you choose the file name to plot.

root –l

root [0] .x /home/student/gui_cint.cpp

- As an input signal, you can connect the provided head-phone jack to your smart phone and
play some music (you’ll have to turn up the volume). Or you download a function generator
onto your phone – for example RADONSOFT Signal Generator. (No smart phone in your
group? Ask your tutor.)

References (.pdf files available in /ISOTDAQ/doc)

- Short intro to uTCA. MicroTCA_ShortOverview.pdf
- http://en.wikipedia.org/wiki/PCI_Express - PCIExpressWikipedia.pdf
- More info about PCIe:

http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1
PCIExpress_Xillybus[1-3].pdf

- Info about the shelf: ELMA_BlueEco_Shelf.pdf
- MCH doc: Samway_MCH_Usermanual_Rev_1.6
- Manual for the IO AMC: HardwareManual_IO_AMC.pdf

Bit manipulations in C(++)

Numbers in computers can be represented in a multitude of ways. While they are in fact stored

and processed in binary form, the choice of representation is yours when programming. Choosing

a useful representation can often make programming tasks easier.

An example:

Registers in computers are the smallest individually addressable unit. In the exercise for this lab

you will be working with 32 bit wide registers (i.e. registers that store 32 bits). Oftentimes with

resource constrained hardware, designers decide to store multiple distinct values in a single

register.

47

http://en.wikipedia.org/wiki/PCI_Express
http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-guide-1

ISOTDAQ 2023 Lab 6: Micro TCA

So e.g. the first eight bits can contain value A, the next four bits contain value B, and the final 20

bits store value C. If now the contents of this register are stored in the C++ variable reg you could

do the following to set value A, B, and C:

reg = 0b11110000111100001111010100110011
Prefixing a number with "0b" indicates that this is a binary representation

After this assignment value A is set to 00110011 in binary, value B is set to 0101, and value C is set

to 11110000111100001111. (Pay attention: by convention the "first part", so in this case A, is on

the right hand side of a number.)

There are a two issues with this assignment:

1. It is quite inconvenient (and error prone!) to have to write out long strings of '0's and '1's

2. With this method we cannot set the values of A, B, and C independently

To tackle the second problem we can use boolean logic. In order to, e.g. set value A to "00000000",

value B to "1111", and value C to "11111111110000000000" we can perform the following

operations:

uint32 reg = 0b00000000; # Note: This can be also written as "reg = 0b0" or "reg
= 0". Zero is zero in all bases.
reg = reg | (0b1111 << 8);
reg = reg | (0b11111111110000000000 << 12); # The shift by 12 is necessary,
because we first shift by 8 bits (due to value A), then by 4 bits (due to value
B)

Let's unpack the above: "reg" is initially zero, and in the first line we set it to the value for value A

(which happened to be zero too). In the second line the operation a << b is called a "left shift".

This operation moves the value a to the left by b bits. So in our case: 0b1111 << 8 ==
0b111100000000. After this we perform a bitwise OR operation ("|") between the previous

contents of the reg register and 0b111100000000, which gives the result 0b111100000000,

because the previous content was zero. In the third line we repeat this for value C, where the

bitwise OR is performed between 0b111100000000 (from the previous line) and

0b11111111110000000000000000000000, which results in

0b11111111110000000000111100000000.

The first problem can be ameliorated by working with hexadecimal representation: instead of

representing numbers in binary (or decimal) we can write them in hexadecimal representation. So

instead of writing "15" or "0b1111", we can write "0xF". Similarly "10", or "0b1010" can be written

as "0xA" in hexadecimal:

Decimal Binary Hexadecimal

0 0b0 0x0

1 0b1 0x1

2 0b10 0x2

48

ISOTDAQ 2023 Lab 6: Micro TCA

3 0b11 0x3

… … …

9 0b1001 0x9

10 0b1010 0xA

… … …

15 0b1111 0xF

16 0x10000 0x10

You may have noticed the useful pattern already: hexadecimal digits (i.e. 0 to F) align to four bits!

So the hexadecimal number "0x1020A'' corresponds to "0b00010000001000001010" (note that

the leading zeros were just added for illustration and aren't necessary).

Putting our two tricks together we can now set the register in the following way:

uint32 reg = 0x0;
reg = reg | (0xF << 8);
reg = reg | (0xFFC00 << 12);

Addendum: Signed numbers

Until now we have been dealing with unsigned numbers (i.e. such numbers that are always

positive), however you may need to use signed numbers at times. While the binary representation

of unsigned numbers is quite straightforward (and was shown in the table a bit earlier in this

document), we nowadays use the so-called two's complement encoding of signed numbers: in this

scheme half the available "bit values" are used to encode negative numbers, while the remaining

half are used to encode zero and positive numbers. Consider this example for three bit and four bit

two's complement numbers:

Bit value Unsigned value Three bit two's complement Four bit two's complement

0 0 0 0

1 1 1 1

10 2 2 2

11 3 3 3

100 4 -4 4

49

ISOTDAQ 2023 Lab 6: Micro TCA

101 5 -3 5

110 6 -2 6

111 7 -1 7

1000 8 — -8

1001 9 — -7

1010 10 — -6

1011 11 — -5

1100 12 — -4

1101 13 — -3

1110 14 — -2

1111 15 — -1

(You can find a more rigorous discussion of two's complement in the Wikipedia article:

https://en.wikipedia.org/wiki/Two%27s_complement.)

As you probably noticed, a three bit two's complement number and a four bit two's complement

number diverge significantly in terms of what a given "bit value" means for each of them. For

instance the bit string 0b110 encodes "-2" if interpreted as a three bit two's complement number,

but it encodes "6" when interpreted as a four bit two's complement number.

It is therefore important to correctly choose the datatype (e.g. int32 vs. short) when reading bit

values that contain signed data.

50

https://en.wikipedia.org/wiki/Two%27s_complement

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

Lab 7: System Development using LabVIEW

Gary Boorman, RHUL (Gary.Boorman@rhul.ac.uk)

Adriaan Rijllart, CERN (Adriaan.Rijllart@cern.ch)

51

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

Introduction
LabVIEW is systems engineering software for applications that require test, measurement and

control, with rapid access to hardware and data insights. It uses a graphical approach to visualize

every aspect of the application, including hardware configuration, measurement data and analysis.

LabVIEW excels at acquiring data from electronic measurement systems, such as that shown

schematically in Fig. 1.

Figure 1: Data acquisition system (from Wikipedia)

The sensor, or transducer, converts a physical quantity (temperature, pressure, acceleration,

position etc) into an electrical signal. Conditioning of this signal, usually with analogue electronics

such as amplifiers or filters, is sometimes necessary. The resulting signal is converted into the

digital domain using an analogue-to-digital converter (ADC) and a computer system can then

process and store these digital data. The numbers and the physical types of the measured signals

can all be different, as can the processing algorithms. The computer can also generate digital data,

such as an output of a control system, which can drive actuators (mover systems, valves etc.) or be

converted into an electrical signal via a digital-to-analogue converter (DAC). If all types of signals

could be processed then any measuring problem could be solved. Modular instrumentation allows

a system to be built that can process many different types of signal.

National Instruments (NI), the producer of LabVIEW, has been developing measurement

equipment since the 1980s. They make modular, programmable hardware for a wide range of

applications, from acquiring simple analogue signals at a few Hz, to complex FPGA-based

high-speed control systems capable of running real-time software for high reliability.

This laboratory session makes use of both LabVIEW and a NI Compact DAQ chassis (cDAQ-9178),

into which are installed several types of input/output module, both analogue and digital,

summarized in Table 1.

52

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

Table 1: Function of Data Acquisition modules

Device Number of channels Application

NI-9211 4 Thermocouple readout 24 bits

NI-9474 8 High-speed digital output

NI-9263 8 General-purpose analogue +/- 10V output

NI-9205 16/32 General-purpose +/- 10V input (16 differential, 32 single-ended)

The cDAQ chassis has the following (programmable) internal electronics system: four 32-bit

general-purpose counters, FIFO for analog/digital inputs (with 127 depth per slot), FIFO for digital

outputs (2047 samples), clock generators (base clocks of 20 MHz, 10 MHz and 100 kHz with

divisors: 1 to 16), digital trigger circuit. Using LabVIEW, the chassis can be programmed to control

the modules (a typical set-up is shown in Fig. 2), and a computer can then visualize the acquired

data and perform analysis on it.

Figure 2: Typical CompactDAQ setup controlled with LabVIEW

Discuss the following question:

What is the advantage of modularity when developing a measurement system?

● The cDAQ, and all other NI hardware, has the advantage of self-discovery. Plug it in and

chassis, and any modules/cards present, will be automatically detected

● Common interface to all modules as well as external equipment

● No knowledge of individual busses or communication methods is required, since this is

abstracted within the LabVIEW software

53

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

● Scalability – code can work on any number of modules, or even chassis, with minimal

changes

Exercise 1: Configure Hardware
This exercise tests the configuration of the CompactDAQ system.

Set up the Hardware

1. Ensure the NI CompactDAQ chassis (cDAQ-9178) is powered on.

2. Connect the chassis to the PC using the USB cable.

3. The NI-DAQmx driver installed on the PC will automatically detect the cDAQ chassis and

bring up the following window.

4. Select Configure and test this device using NI Measurement & Automation Explorer. NI

Measurement & Automation Explorer (MAX) is a configuration utility for all National

Instruments hardware. It can take several seconds to start, depending on how many

devices are connected to the PC.

5. Within MAX, the Devices and Interfaces section under My System shows all the National

Instruments devices installed and configured on the PC. By default, the NI CompactDAQ

chassis NI cDAQ-9178 shows up with the name ‘cDAQ1’.

54

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

6. Click the triangle to the left of the cDAQ entry to show the modules contained in the

chassis.

7. Right-click on NI cDAQ-9178 and select Self-Test.

8. The cDAQ passes the self-test, meaning it has initialized correctly and can communicate

with the modules, and is ready to be used in a LabVIEW application.

Exercise 2: Create a LabVIEW Application

This exercise creates a VI that can read a temperature sensor (thermocouple) and display both the

current temperature and a history of the previous values.

1. Start the LabVIEW application (NI LabVIEW 2021 SP1).

2. Create a new VI, by going to File» New VI.

3. The VI consists of the Front Panel, the window with which the user interacts, and the Block

Diagram, where the code is written. The two panes can be displayed side-by-side using

<Ctrl +T>.

4. Display the Functions Palette by right-clicking on the white space on the LabVIEW block

diagram window.

5. Select the Express» Input palette and click the DAQ Assistant Express VI. Place it on the

block diagram.

6. Once the DAQ Assistant VI is placed the Create New Express Task… window then appears:

55

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

7. To configure a temperature measurement application with a thermocouple, click on

Acquire Signals» Analog Input» Temperature» Thermocouple. Expand cDAQ1Mod1 (NI

9211), highlight channel ai0, and click Finish. This adds a physical channel to your

measurement task.

8. Ensure the CJC Source is set to Built In and Acquisition Mode to 1 Sample (On Demand).

Click the Run button to see live data from the thermocouple. The Display Type can be

changed to show either a Chart or Table.

56

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

9. Click Stop and then click OK to close the Express block configuration window to return to

the LabVIEW block diagram. It takes a few seconds for LabVIEW to build the code.

10. A While Loop is also required: right-click on the block diagram and select Structures» While

Loop and draw a loop around the Express VI.

11. Right-click the Condition Terminal in the bottom right corner of the While Loop and select

Create Control. A Stop button is placed on the Front Panel, and its terminal is linked to the

While Loop. Move the Stop terminal as shown, and also connect it to the Stop (T) terminal

of the DAQ Assistant.

57

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

12. On the Front Panel select Numeric» Thermometer and adjust its size to ensure comfortable

viewing. Rename the its label to ‘Temperature’. On the Block Diagram, wire the DAQ

Assistant data terminal to the Temperature terminal.

13. Finally, add Timing» Wait (ms) inside the While Loop and create a constant with a value of

250. The while loop will now run, reading the thermocouple and displaying the

temperature every 250 ms.

14. To view the temperature history, a chart is required. On the Front Panel, right-click and

select Graph» Waveform Chart. Rename it Temperature History and adjust its size.

15. On the diagram, connect the Temperature History terminal to the DAQ Assistant data

terminal.

16. Save the VI and then run it. Note the Y-scales of both the Thermometer and the Chart can

be auto-scaled, and the maximum and minimum values defined by the user. The data

points/line on the Chart can also be altered. These changes can be done either during code

editing or when the code is running.

End of Exercise 2

58

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

Exercise 3: Add a Threshold to the Temperature Reading

This exercise extends the VI from the previous exercise to add an indication of when the input

temperature exceeds a user-defined threshold.

1. On the Front Panel, select a Numeric» Vertical Pointer Slide and position it next to the

Temperature indicator. Adjust its position and size, and set the Threshold maximum and

minimum values to the same as that of the Temperature indicator. Name the new control

Threshold.

2. On the Block Diagram, from the Comparison palette, select a Greater or Equal? function,

and wire as shown.

3. On the Front Panel, select Boolean» Square LED and rename it ALARM. Adjust the size. On

the block diagram wire the output of the comparator to the ALARM terminal.

4. Save and run the VI. Notice the ALARM indicator lights up when the current temperature

exceeds the threshold.

5. The default colour for a Boolean indicator is green, which is not useful for indicating when a

59

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

process is in an Alarm or Fault state. Right-click the ALARM indicator, select Properties and

adjust the colours to suit.

6. The Front Panel should look similar to the following:

7. Ensure the VI is saved after any further changes are made.

End of Exercise 3

Exercise 4: Output the Alarm
This exercise builds on the previous VI, adding code to write the current Alarm value to a Hardware

digital indicator.

1. Place a second DAQ Assistant within the While Loop on the block diagram. Configure it

Generate Signals» Digital Output» Line Output.

2. Select the channel NI-9474 port0/line0 and press Finish when done.

3. Ensure the Generation Mode is set to 1 Sample (On Demand).

4. The 9474 Digital output module can be demonstrated before the DAQ Assistant is closed.

Click Run, and change the DigitalOut button state, and observe the LED on channel 0 of the

9474 module. Stop the DAQ Assistant and click OK for the code to be generated.

5. On the block diagram, rename the DAQ Assistant2 to Alarm Output.

6. Ensure the Alarm Output is moved within the While Loop, and wire to its data input from

the output of the Greater or Equal? comparison function.

60

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

7. Save and Run the VI.

8. Adjust the threshold value to ensure the Alarm can be triggered.

9. The digital output module can drive relays or interface with other industrial control

systems, but for demonstration it is only driving a red LED.

End of Exercise 4

61

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

Exercise 5: Data Logging
This exercise writes to file the current temperature, using the VI from the previous exercise.

1. On the Block Diagram, place File I/O» Write to Measurement File.

2. Make changes to the configuration as shown. The file location may need to be adjusted,

depending upon the setup of the computer and directory write permissions.

3. Wire the output of the original DAQ Assistant to the Signals input of the File VI.

4. Save and then run the VI for a few seconds, halting the VI using the Stop button. Open and

examine the newly created data file.

5. Change the Write to Measurement File configuration to include one header, and again

inspect the data file.

6. The location of the data file can be displayed on the Front Panel. On the block diagram

right-click the top-right terminal of the Write to Measurement File function, then select

Create» Indicator. Expand the indicator on the front panel to enable the path and filename

to be displayed.

End of Exercise 5

62

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

Exercise 6: Generate and Acquire a Waveform
This exercise sets up one of the cDAQ modules to output a sine wave of user-defined frequency

and amplitude, and another module to read the generated waveform. If time permits, some basic

analysis of the acquired signal can be performed. Different VIs can be made for each function, but

the VIs can be run concurrently.

Signal Generation

1. Generate a sine wave using the analog output module (9263). Create a new VI and place a

DAQ Assistant Express VI on the block diagram and make it generate an analogue voltage.

The default settings will be sufficient.

2. Add a Simulate Signal Express VI and change the number of samples to 1000, using

Simulated Acquisition timing. This VI will generate 1000 samples, at a rate of 1000 samples

per second.

63

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

3. Connect the Sine output of this VI to the Data input of the DAQ Assistant.

4. Create controls for the Frequency and Amplitude of the Simulate Signal VI. These appear

on the front panel and can be changed to knobs or sliders to make them more usable.

5. On the Block Diagram enclose the VIs and Controls in a While Loop and add a Stop button.

6. Change the maximum value on the Frequency control to 1000 (Hz).

7. Save the VI (Sine Generation.vi) and then run it. The output can be viewed on an

oscilloscope if one is available.

Signal Acquisition

1. Create a new VI and add a DAQ Assistant Express VI on the block diagram to acquire an

analogue voltage using the 9205 module.

2. Change the module configuration to read 1000 samples, but leave the other parameters as

default.

3. Right-click the output of the DAQ Assistant and create a graph indicator. Adjust the size

graph on the Front Panel.

4. Add a While Loop and Stop button and save the VI as Sine Acquistion.vi

5. Ensure the two modules, 9205 and 9263, are connected correctly (each module uses

channel 0 as their input and output).

6. Run both the Sine Generation and Sine Acquisition Vis. Observe the graph output as the

frequency is increased from a few Hz to 1 kHz. Is the output correct, ie what is expected?

Aliasing

1. Stop both VIs. Edit the configuration of the Simulate Signal in Sine Generation.vi to

generate 10,000 samples at 10 kS/s. This ensures a smooth sine wave up to 1 kHz can be

generated.

2. Edit the Sine Acqusition.vi block diagram. Add a Buneman Frequency Estimator function.

Use ctrl-space to open the quick drop menu and type Buneman to quickly find the function.

3. Wire from the DAQ Assistant data output to the Buneman input (the DDT to Array function

is automatically inserted) and create an indicator for the Buneman Beta output.

64

ISOTDAQ 2023 Lab 7: System Development using LabVIEW

4. Set the Sine frequency generation to 100 Hz and run both VIs. Verify the Buneman

function returns the correct value.

5. Change the sine frequency generation in steps of 100 Hz (ie 200, 300, 400 …) up to 1000

Hz, and record the value of Beta.

6. Is this the expected outcome? Where does the linear relation between the measured and

generated break down?

7. The Nyquist frequency is defined as half the sampling rate, in this case 500 Hz.

8. This is an example of aliasing, where the measured (apparent) frequency is an alias, or

disguised value, of the generated frequency. This occurs because of under-sampling of the

input signal – the acquisition rate is too low to acquire all of the frequency information in

the input signal.

9. How can aliasing be overcome in a signal acquisition system? Are there occasions where

aliasing can be used to your advantage?

End of Exercise 6

End of Lab 7

65

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

Lab 8: ADC basics for TDAQ
Tutor: Anna Kulinska (anna.kulinska@cern.ch)

Table of Contents:

Concepts of this lab………………………………………………………………………………66

Lab setup………………………………………………………………………………………….67

Architecture of a Linux device driver for the PCIe card………………………………………68

Introduction to Analogue to Digital Conversion (ADC)...71

Extra resources..…………………………………………………………….……..…………….77

Acknowledges……………………………………………………………….……..…………….77

Concepts of this lab

Figure 1 below shows the generic signal flow of a Data AcQuisition (DAQ) system performing

Analog to Digital Conversion (ADC), as well as trigger, data readout and slow control.

Figure 1 - Basic DAQ chain featuring ADC

66

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

The scope of this laboratory experience is to understand and experiment with the following

components of a Trigger and Data AcQuisition system:

1. Triggers:

1.1. External triggers: accelerator like type of triggers

1.2. Triggering on the signal: physics detector like type of triggers

2. Analog to Digital Converter (ADC): we will try to understand fundamental parameters that

come into play when measuring with ADC; for example its resolution, speed, bandwidth,

acquisition window, etc.

Lab setup

Theory

Figure 2 below depicts the setup for Lab 8.

Figure 2 - Equipment setup

1. Arbitrary Function Generator (AFG), is the input of our system (acquired signal and trigger)

2. Oscilloscope, is the monitor for qualifying our system (to cross-check that the signals fed to the

system are truly what intended)

3. SPEC+FMC ADC card plus host PC: this is the core ADC DAQ

3.1. FPGA Mezzanine Card (FMC) ADC: http://www.ohwr.org/projects/fmc-adc-100m14b4cha

3.2. Simple PCI Express Carrier (SPEC) card: http://www.ohwr.org/projects/spec/wiki

3.3. Linux based host PC

67

http://www.ohwr.org/projects/fmc-adc-100m14b4cha
http://www.ohwr.org/projects/spec/wiki

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

Practice

1) Construct/confirm the experimental setup according to the sketch you find at the beginning

of this document. Check that both outputs of the AFG are switched OFF.

The signal generated by the Channel-1 (source input) of the AFG unit is supplied to the

oscilloscope, and to the Channel-1 input of the ADC card. Use a T-BNC to split the signal at the

AFG output. Also check if the Channel-2 output (trigger input) of the AFG is connected to the

Trigger input of the ADC card. Again, you can monitor the trigger on the scope by spitting with

a T-BNC on the AFG output.

2) Using the AFG, while keeping the outputs OFF, set Channel-1 to generate a sine waveform

with a frequency of 1 MHz and amplitude of 1 Vpp. Completed this operation, set Channel-2

to generate a pulse waveform with a frequency of 1 KHz and amplitude of 4 Vpp, with 2 Vpp of

an offset. Check again that the amplitudes of the channels are below 5 Vpp and the outputs

are OFF.

3) Set the scope to clearly show both the sine (source input) and the pulse (trigger input)

waveforms on the screen.

4) Switch ON both outputs of the AFG

5) Compare the waveforms on the scope with the setting of the AFG. Are the waveforms stable?
Are the amplitudes as expected? If not, what can be the issue? How can we solve it?

6) Switch OFF both outputs of the AFG

Architecture of a Linux device driver for the PCIe card

Theory

Before running the DAQ system, an overview on the communication between the software and

the hardware layers and an introduction to the role of device drivers, is fundamental to

understand. Figure 3 shows a simplified diagram of the Layers of a Linux Operating System (OS).

The basic control is on the hardware peripheral itself. The lowest level software for this system

resides in the kernel of the OS as a “device driver.” There are certain control/status registers on the

ADC card. These registers can be accessed just like a regular memory access in a C program.

As seen earlier in this document, in our context, the ADC DAQ hardware used is composed of two

electronic boards: the SPEC carrier board and the FMC ADC module. The first board is attached

directly to a PCIe slot connector on the PC and is the host for the ADC module. The SPEC card acts

as a bridge for the electrical signals of the ADC FMC to be interfaced and converted to PCIe.
For the scope of this lab, the “bridging” is done by some “black box” electronics. Thus,

68

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

from a software perspective, one kernel module is instantiated to use the SPEC card,
another one for the FMC ADC module.

Figure 3 - Layers of a Linux OS

For simple sensors and devices vendors provide information about their operation and use, which

can be seen as a map of internal registers and/or procedures. They are required to perform

operations or change their current states (more about in Exercise 12 "DAQ Online Software”). For

the sake of simplicity and reusability of software code, software engineers created the concept of

frameworks. Among others, this concept was used at CERN for creating a flexible interface for the

development of input and output drivers. The target is for very-high-bandwidth devices, with

high-definition time stamps and a uniform metadata representation. Such framework is named the

ZIO (with Z standing for “The Ultimate I/O” Framework).

In short, the way ZIO provides to talk to our hardware is through two different channels, one for

control and one for data. Figure 4 shows the two data flows.

Figure 4 - ZIO data pipeline

When designing a piece of low-level software to communicate to an acquisition device, it is

important to choose the way data streams should be passed back and forth the hardware device.

69

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

To illustrate this, they can be qualified in three types: Polling mode, Interrupt based, and DMA

(Direct Memory Access) transfers.

● Polling mode: the CPU checks the state of the device’s registers every time it can, this has the

advantage of providing a fast and low latency communication and data transfer between

them, but at the cost of high CPU load.

● Interrupt based: this type of transfers eases the CPU load time as it only have to care about
the hardware when it tells the CPU to do so; it has the advantage of a lower impact on CPU

loads and fast transfer, but with variable latency.

● DMA transfers: relies on a shared memory area the CPU provides to the DMA controller to

work on the transfer with the hardware device, this frees completely the CPU from controlling

the hardware transfer representing a true concurrent system. Highest of all transfer rates

allied to an acceptable latency.

Practice

7) Login to the PC (user: adc_lab | pass: isotdaq) and reset the directories with the files of the

lab by executing following script, so all the work/changes done by the previous group are

removed and a fresh copy of the files are installed.

$ cd ~/lab8_adc

$./reset_adc_folder.sh

8) To load the drivers, change to the required directory and execute the following script. You

need the root password to execute the command above:

$ cd adc

$./load_drivers.sh

Spying the content of our script shows the correct order for loading the different kernel modules

and set the user permission to talk with the ADC board. It is also possible to check the current

kernel modules loaded by issuing the command lsmod.

9) To change a termination setting and observe results, turn on AFG outputs and run:

$./set_termination.sh <channel nb> <high impedance on/off>

Do you see a change in signal amplitudes? Can you explain why? Turn off AFG.

70

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

Introduction to Analog to Digital Conversion (ADC)

Theory

An Analog to Digital Converter (ADC), also known as “digitizer”, is a device which periodically

converts the level of an analogue signal into an integer number in base 2. In other words, an ADC is

a device that converts a continuous signal into a discrete representation, both in signal level

(quantization) and time (sampling).

The number of choices of this integer for representing the level of the analogue signal

(quantization) is determined by the number of bits used for the digitization.

Example: We have a voltage signal whose range is [0 - 10] Volt and we have a digitizer which has

just 3 bits. We can have 8 different integer numbers with 3 bits. Each of these numbers will

correspond to a voltage. See table below.

Figure 5 – Quantization & Sampling

As previously mentioned, this kind of conversion is performed at regular intervals (sampling) and

the repetition (frequency, Hz) is called sampling frequency (normally expressed in samples per

second). The spectrum of an analogue signal (above) and its sampled version (bellow) are shown in

Figure 6.

Theoretically, the limit in how fast may vary the signal that we are measuring is set by the Nyquist

frequency. The Nyquist theorem states that: the minimum sampling rate of an acquisition device

must be at least two times the maximum frequency of the original signal, otherwise information

would be lost in the process. If this criterion was not respected, the positive and negative

frequencies (see in the spectrum of the sampled signal) would overlap and the signal information

would be lost. This effect is called aliasing.

71

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

Figure 6 – Spectrum of an analogue signal (above) and its sampled version (bellow)

Also note that to improve the precision of the measurement one should:

● Increase the number of bits, so each corresponding range is small with respect to the signal

to be sampled

● Increase the sampling frequency, respecting the maximum frequency allowed (see Nyquist

frequency). Please note that a precise sampling clock should be used, such that the

deviation between consecutive samples is kept as constant as possible.

Qualify in the best possible way a set of signals mimicking real experimental equipment. The

tutor will provide some pre-cooked ones (sine waves, positive pulses, scintillator like pulses) but

you can try to think of your real world input.

In general terms, a digitization process is characterized by the following:

● Signal range (dynamic range): how much the signal can vary to be correctly interpreted by

the device

● Resolution: The step between consecutive levels of the analogue signal when represented

as integer number

● Sampling frequency: the rate at which it can convert an analogue value to a discrete signal

● Noises: physical quantities responsible for the signal deterioration (e.g. added noise,

intrinsic noise, quantization errors, etc.)

● Latency: How long does the device takes to finalize the acquisition process in the chain

The best measurement is achieved by understanding and controlling those parameters. The

designers (so YOU) have to decide how to setup your TDAQ: choose a trigger type, define the

acquisition windows, find the signal in the window, maximize the scaling for increasing the

accuracy of the measurement, etc.

72

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

The ADC card we will be using has 14-bit voltage resolution and a minimum sampling period of

10 ns (100 Msps). In this exercise, we will operate the ADC in order to understand and push its

limits.

Practice

10) Now it is time to test our ADC, turn ON only Channel-1 of the AFG and check if the signal is

correctly displayed by the oscilloscope. Run the acquisition program which will subsequently

show an acquisition plot:

$ cd tdaq

$./fald-acq -b 0 -a 1000 -n 1 -e –r 10 -l 1 -g 1 -X 0500

Where acq-program has the following parameters:

--before|-b <num> number of pre samples
--after|-a <num> n. of post samples (default: 16)
--nshots|-n <num> number of trigger shots
--delay|-d <num> delay sample after trigger
--under-sample|-u|-D <num> pick 1 sample every <num>
--external|-e use external trigger
--threshold|-t <num> internal trigger threshold
--channel|-c <num> channel used as trigger (1..4)
--range|-r <num> channel input range: 100(100mv) 1(1v) 10(10v)
--negative-edge internal trigger is falling edge
--loop|-l <num> number of loop before exiting
--graph|-g <chnum> plot the desired channel
--X11|-X Gnuplot will use X connection
<LUN> device ID ($ lspci | grep CERN)

Did the program make the acquisition?

11) Turn ON Channel-2 of the AFG. Does it run now?

12) Now that we know that the ADC is working properly, we can go to some real time data
analysis. Bearing this in mind, there is a small program called V_t_continous which uses the

ROOT framework functionalities and runs on top of fald-acq. To run V_t_continous issue

the command:

$ root V_t_continous_Ext.C

13) One issue you may get while changing the frequency is the ‘non-stopping’ graph, meaning it is

continuously sweeping horizontally. What causes this?

Since we are using Channel-2 of the AFG as an external trigger, its triggering frequency dictates

how, or at which point in time, the acquisition of Channel-1 signal starts. In practice: if the

73

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

frequency of our sine wave is not a harmonic of Channel-2 pulse, i.e. not an integer multiple,

the ADC doesn’t capture the signal at the same phase.

Figure 7 – Signal frequency non multiple of trigger frequency

Figure 8 - Signal frequency multiple of trigger frequency

14) Now that you know the trigger requirements for having a “static” plotting of the waveform,

let’s do a new acquisition, but this time using the following script:

$ root V_t_continous_Ext_CH2.C

Do you see any difference with respect to the previous acquisitions done the other script? If
so, are you able to understand what is going on?

15) So far, we have applied external triggers to our acquisitions. In this point we are going to

trigger on the signal (Figure 9 shows a diagram of this type of acquisition). For this type of

acquisition, reduce frequency of the sampled signal to 20 kHz, turn OFF the trigger

channel on the AFE and run the following script:

$ root V_t_continous_Int.C

74

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

Figure 9 - DAQ triggering on the signal

Do you see any difference with respect to the previous acquisitions done the other script? If so,

are you able to understand what is going on?

16) Going further, let’s push the frequency of our signal to the limits of the ADC capabilities.

Recalling that our ADC specifications say that the default sampling rate is 100 Msps try to

increase the signal frequency in steps of MHz (make sure you are changing the frequency and

the NOT the amplitude). Please note: it is recommended to decrease the number of samples in

our acquisition window; otherwise it would become hard to analyze the signal in a cloud of

points.

For this, open the V_t_continous_Ext_CH2.C file with your favourite editor and change

the number of post samples (-a parameter) to 100 or less, it is located on the line which calls

fald-acq.

Turn ON the trigger channel on the AFE

Run V_t_continous_Ext_CH2.C file again.

Can you see the relation between the acquisition window and the signal speed?

17) You can see that the closer you get to 100 MHz the worse the acquisition signal looks like. Can

you define the maximum AFG signal frequency where our sine wave keeps its shape in a single

acquisition shot (i.e. you can still see a sine wave with the same frequency as the original

signal)? Does maximum signal frequency match our expectations regarding the Nyquist

theorem? It not, do you know the reason of this mismatch?

In the example of Figure 10 below: the original signal is in blue, the sampling points are

pointed by the black arrows and the acquired data is represented in orange. As previously

75

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

mentioned, when the Nyquist criteria is not respected an effect called aliasing appears. This

effect is illustrated with the orange signal in the time domain.

Figure 10 - Aliasing effect

Does maximum signal frequency match our expectations regarding the Nyquist theorem? It

not, do you know the reason for this mismatch?

18) The maximum Nyquist frequency is computed on a signal ideally composed of a single

sinusoid. In fact any real function of a complex signal is mathematically described as the sum

of a series of trigonometric functions in the frequency domain (called signal spectrum) instead

of time. Fourier series and transforms base their analyses on this concept. The spectral

representation of a sine wave is rather simple: it is only a single line centred on the frequency

it converts from the time domain. The spectral content is more complex for different

waveforms signals such as square, saw-tooth and other more complex signals. To qualify ADCs

the most used method are based in the frequency domain.

In order to check how our acquisition systems behaves with complex signals go back to the

frequency of 1 MHz but change the type from sine-wave to square signal. Increase the

frequency to values below Nyquist criteria.

19) In case of having some time left, ask the tutor to present a real time Fast Fourier Transform

(FFT) and ask further questions!

76

ISOTDAQ 2023 Lab 8: ADC basics for TDAQ

Extra resources

Useful bash commands:

$ ps – lists all processes

$ jobs – lists all jobs

$ htop – process viewer

$ kill <process or job ID> - kills process based of the ID

$ pkill -f < process or job name> - kills process based on the name

$ kill %<job number> - kills job

If you are interested in more details about ADC parameters, please check:

http://www.analog.com/en/analog-to-digital-converters/products/index.html

If you are interested in understanding more in detail the fundamentals of ADCs and the

importance of clock stability (jitter), please check:

https://www.analog.com/en/education/education-library/data-conversion-handbook.html

http://anlage.umd.edu/Microwave%20Measurements%20for%20Personal%20Web%20Site/Tek%2

0Intro%20to%20Jitter%2061W_18897_1.pdf

Acknowledges

Manoel Barros Marin (manoel.barros.marin@cern.ch, tutor of this lab in ISOTDAQ2022)

Andrea Borga (andrea.borga@nikhef.nl, initiator and tutor of this lab in ISOTDAQ2016)

Cairo Caplan (cairo.caplan@cern.ch, initiator and lab assistance in ISOTDAQ2016)

Diogenes Gimenez (diogenes.gimenez@usp.br, initiator and lab assistance in ISOTDAQ2016)

Jan Pospíšil (Jan.Pospisil@fosfor.cz, tutor of this lab in ISOTDAQ2018)

77

http://www.analog.com/en/analog-to-digital-converters/products/index.html
https://www.analog.com/en/education/education-library/data-conversion-handbook.html
http://anlage.umd.edu/Microwave%20Measurements%20for%20Personal%20Web%20Site/Tek%20Intro%20to%20Jitter%2061W_18897_1.pdf
http://anlage.umd.edu/Microwave%20Measurements%20for%20Personal%20Web%20Site/Tek%20Intro%20to%20Jitter%2061W_18897_1.pdf
mailto:manoel.barros.marin@cern.ch
mailto:andrea.borga@nikhef.nl
mailto:cairo.caplan@cern.ch
mailto:diogenes.gimenez@usp.br
mailto:Jan.Pospisil@fosfor.cz

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

Lab 9: Networking for Data Acquisition Systems

I. Introduction

Through the use of a simplified network setup this lab aims at getting you familiar with the

following notions involved in networking:

● configuration: MAC and IP addresses, switch management, VLAN, routing, DNS

● monitoring: SNMP, traffic analysis

● testing: performance benchmarking, TCP/IP

● troubleshooting: tcpdump

● optimizations: DHCP, DNS

78

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

The lab setup consists of:

● 2 headless desktop computers (pc-isotdaq-1 and pc-isotdaq-3) mimicking readout

system servers that read data out of the detector, process them, and transfer them:

they are the data sources.

● 1 desktop computer (pc-isotdaq-2) mimicking a data aggregator server receiving and

formatting data from different data sources: it is the data destination.

● 1 enterprise-grade network switch mimicking a data collection network.

● 1 control network used to connect to the different computers, collect monitoring data,

and allow us to configure and use the data collection network. The control network is

running on the switch in a separate VLAN to avoid interference with the data collection

network.

II. Exercises

1. Switch Configuration

1. The switch has just been powered on and has default factory configuration. Network

cabling is as follows:

79

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

2. Login to the pc-isotdaq-2 with username / password: student / Student

3. By default the switch has hardly any functional configuration and we have to deploy the

configuration. There are few ways to do this, including via dhcp/tftp, serial port or usb.

We’re going to use the serial port approach. Login to the switch using the serial line from

pc-isotdaq-2 by using the “minicom” application:

[student@pc-isotdaq-2]$ sudo minicom

You’ll be prompted for a username / password: student / Student

4. Now check the configuration which is on the switch using the serial console:

student@sw-isotdaq-00> show configuration

5. Let’s start by configuring a static IP address on the management interface (vme) of the

switch so that we can connect to it over the network.

student@sw-isotdaq-00> configure

student@sw-isotdaq-00# set interfaces vme0 unit 0 family inet
address 192.168.1.100/24

Note: the last character of the prompt changes from > to # in configuration mode, To come

back to the normal mode, just type exit.

You can review your changes and commit the new configuration:

student@sw-isotdaq-00# show | compare

student@sw-isotdaq-00# commit

student@sw-isotdaq-00# exit

student@sw-isotdaq-00>

6. Now the switch can be reached remotely, open a new terminal window and try to ping the

switch from pc-isotdaq-2:

[student@pc-isotdaq-2]$ ping 192.168.1.100

7. Now try to SSH to it:

[student@pc-isotdaq-2]$ ssh student@192.168.1.100

Can you explain what happened?

8. Using the serial console let’s enable the SSH daemon on the switch:

student@sw-isotdaq-00> configure

student@sw-isotdaq-00# set system services ssh

student@sw-isotdaq-00# show | compare

student@sw-isotdaq-00# commit

student@sw-isotdaq-00# exit

9. Now try to SSH to it again.

10. Check the other two PCs can talk to each other over the control network, using ping or ssh

from pc-isotdaq-2.

80

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

11. Why can the PCs all talk to each other over the switch? Which VLAN are their ports all part

of? You could use the following command to see the VLANs present on the switch:

student@sw-isotdaq-00> show vlans

12. Before proceeding further, let’s have a quick look at what the arp cache is. First on
pc-isotdaq-2 let’s ping the other two PCs and then dump the arp cache. What does it
contain?

[student@pc-isotdaq-2]$ ping 192.168.1.10 (ctrl-c to stop it)

[student@pc-isotdaq-2]$ ping 192.168.1.30 (ctrl-c to stop it)

[student@pc-isotdaq-2]$ arp -an

13. The switch also learns about who (which MAC) is on which port, i.e. it also has an arp cache
or table:

student@sw-isotdaq-00> show ethernet-switching table

14. Now that we have configured the access via SSH to the switch and validated the control
network is functional, let’s configure the data network on the switch.

15. Go to the switch interface and enter configuration mode.

16. Setup the VLAN names “VLAN10” and its associated configuration (VLAN id, but also the
routing interface with its IP):

student@sw-isotdaq-00# set vlans VLAN10 vlan-id 10

student@sw-isotdaq-00# set interfaces irb.10 family inet address
10.0.10.1/24

student@sw-isotdaq-00# set vlans VLAN10 l3-interface irb.10

17. Repeat for the other two VLANs (20 and 30), then check the configuration changes
according to the diagram below. When you are happy commit the changes.

81

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

18. Setup the ports to which the data network of the PCs are connected to be in the correct
VLANs (see the switch connection diagram). The command is given only for one, but do all
three. Check changes and commit if happy.

student@sw-isotdaq-00# set interfaces ge-0/0/8 unit 0 family
ethernet-switching vlan members VLAN20

19. From pc-isotdaq-2 try to ping the VLAN20 IP on the switch:

[student@pc-isotdaq-2]$ ping 10.0.20.1

20. Did that work? What does the message seem to indicate?

21. So let’s configure the network interface on the PCs for the data network they are connected
to.

Note: you can list the network devices on the PC with the command:

[student@pc-isotdaq-2]$ ip address

The data interfaces are named like: enp0s20f0uX, where X may vary depending on the PC.

Again this is only for one PC, but do it on all. Use ssh to connect to the other PCs.

82

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

[student@pc-isotdaq-2]$ sudo ip addr add 10.0.20.10/24 dev
enp0s20f0u4

22. Confirm you can ping the IP address of the routing interfaces (irb.XX) of the corresponding
data network for this switch.

23. Swap the red and green data network cables on the switch side.

24. Try to ping the routing interface from one of the PCs. e.g. from pc-isotdaq-1:

[student@pc-isotdaq-1]$ ping 10.0.10.1

What happens? Which tool on the switch can we use to find out what is happening?

Use the arp cache on the switch to verify which device is on which port and therefore find
the cabling mistake (the command ip address on the PC should give you the MAC address
of the interfaces, which you can then compare to the switch MAC address table).

25. Revert back the two red and green data network cables.

26. From pc-isotdaq-2 can you ping the data network interfaces on pc-isotdaq-1 or
pc-isotdaq-3?

[student@pc-isotdaq-2]$ ping 10.0.10.10

27. What is the error you get and why? You can view the routing table on the PC with the
following command:

[student@pc-isotdaq-2]$ ip route

28. Setup the routing to the other data networks on each host (on PC1, the VLAN20, on PC3
the VLAN20 and on PC2 the VLAN10 and VLAN30). Here is the command for one of them
(pc-isotdaq-1), do it for all.

[student@pc-isotdaq-1]$ sudo ip route add 10.0.20.0/24 via 10.0.10.1

[student@pc-isotdaq-1]$ ip route

29. Check if you can ping from pc-isotdaq-2 the other two PCs on their data network

[student@pc-isotdaq-2]$ ping 10.0.10.10

[student@pc-isotdaq-2]$ ping 10.0.30.10

Note: as soon as a routing interface (irb.XX) was added to the corresponding VLAN, the
switch automatically established routing rules according to the routing interfaces defined
on the switch. You can check the routing table on the switch:

student@sw-isotdaq-00> show route

30. Can you ping from PC1 to PC3 on the data network? Why not?

Print the routing table from PC1.

Add the route for VLAN30 to PC1:

[student@pc-isotdaq-1]$ sudo ip route add 10.0.30.0/24 via 10.0.10.1

Does it work now? Let’s try to understand why using the “tcpdump” command to dump the
ping (ICMP) packets on pc-isotdaq-3:

[student@pc-isotdaq-3]$ tcpdump -i enp0s20f0u4 icmp

You see the ICMP packets arriving at PC3 but no response going back out. What did we

83

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

miss?

Add the route for VLAN10 on PC3.

[student@pc-isotdaq-3]$ sudo ip route add 10.0.10.0/24 via 10.0.30.1

Try again and confirm with tcpdump that you also see the return packets.

2. Network Monitoring, Routing and Traffic Analysis

Before we further investigate the connectivity in our network, let’s setup a simple monitoring
method called snmp to understand how we could monitor bandwidth and other metrics of
interest.

1. Start by enabling snmp service on the switch:

student@sw-isotdaq-00> configure

student@sw-isotdaq-00# set snmp community public authorization
read-only

student@sw-isotdaq-00# commit

2. After this we can use a commands from the NET::SNMP family on pc-isotdaq-2 to pull data
metrics and other data from the switch:

[student@pc-isotdaq-2]$ snmpget -c public -v 2c 192.168.1.100
sysDescr.0

[student@pc-isotdaq-2]$ snmpwalk -c public -v 2c 192.168.1.100
ifInOctets

[student@pc-isotdaq-2]$ snmpwalk -c public -v 2c 192.168.1.100 (full
table, takes a while to download)

3. Note that SNMP uses two representations for object identifier (OID): numerical and
human-readable. You can use “snmptranslate” to translate one into the other:

[student@pc-isotdaq-2]$ snmptranslate -On IF-MIB::ifInOctets.1

.1.3.6.1.2.1.2.2.1.10.1

[student@pc-isotdaq-2]$ snmptranslate .1.3.6.1.2.1.2.2.1.16.3

IF-MIB::ifOutOctets.3

4. In the example in step 2, we could see the interface index number. This is essential
information to have for each of the interfaces we like to monitor. Use the following to
figure out the index number for the ge-0/0/2 that connects to pc-isotdaq-2:

[student@pc-isotdaq-2]$ snmpwalk -c public -v 2c 192.168.1.100
ifDescr | grep "ge-0/0/2"

5. In the home directory of the “student” user on pc-isotdaq-2 there is a script “monitor.pl”
that can be used to illustrate how the monitoring over snmp could be used. The script takes
one argument, the snmp interface index (the one you collected in the previous step), for
example:

[student@pc-isotdaq-2]$./monitor.pl 516

You should start to see the input/output counters of the corresponding interface
appearing. You can see how the counters react if you start an aggressive ping while the
script is running:

[student@pc-isotdaq-2]$ sudo ping -i 0.1 192.168.1.100 (ctrl+c to

84

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

stop)

Data pulled via snmp could be stored to a time series database and visualized by tools such as
Grafana, MRTG and the like.

3. Performance Testing and Tuning

1. On the PC2 node, start an iperf3 server:

[student@pc-isotdaq-2]$ iperf3 -s

2. On the PC1 node, start an iperf3 client which connects to the previous server. This will
generate a TCP network flow between the two hosts running close to link speed (1Gb/s).
iperf3 will print information about what it is doing and will run the test for 30 seconds (-t
30).

[student@pc-isotdaq-1]$ iperf3 -t 30 -c 10.0.20.10

You can use the “monitor.pl” script to monitor the data network port of PC2 (port ge-0/0/8
on the switch), for this and the following exercises.

[student@pc-isotdaq-2]$./monitor.pl 522

3. On the PC1 node, start an iperf3 client but this time using UDP. UDP having no flow control,
we need to tell iperf3 the amount of data we want to generate (-b 0) stands for “as much
as possible”). Analyze the command output: what differences can you observe in
comparison to TCP?

[student@pc-isotdaq-1]$ iperf3 -t 30 -c 10.0.20.10 -u -b 0

4. On the PC1 node, start an iperf3 client using TCP traffic but lowering the maximum
segment size (MSS). Analyze the command output: what differences can you observe in
comparison to default TCP?

[student@pc-isotdaq-1]$ iperf3 -t 30 -c 10.0.20.10 -M 300

5. On the PC1 node, start an iperf3 client using TCP traffic but lowering (one of) the TCP
window’s max size. Analyze the command output: what differences can you observe in
comparison to default TCP?

[student@pc-isotdaq-1]$ iperf3 -t 30 -c 10.0.20.10 -w 16k

6. On the PC1 node, start an iperf3 client using TCP traffic and bi-directional traffic (-d option)

[student@pc-isotdaq-1]$ iperf3 -t 30 -c 10.0.20.10 –bidir

4. Bonus Exercises

1. In the first exercise the switch was configured with a static IP address through the

serial connection. Another way of doing this necessary first step is to have a DHCP

server configured to provide the switch with an IP. The switch is indeed configured

85

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

by default to request an IP via DHCP. Let’s configure and start a DHCP server on

pc-isotdaq-2. There is already a starting config:

[student@pc-isotdaq-1]$ sudo cat /etc/dhcp/dhcpd.conf

option domain-name "isotdaq.lab";

default-lease-time 40000;

max-lease-time 450000;

subnet 192.168.1.0 netmask 255.255.255.0 {

option subnet-mask 255.255.255.0;

option domain-search "isotdaq.lab";

option domain-name-servers 192.168.1.20;

#

range 192.168.1.40 192.168.1.50;

}

Add a section for the switch after the existing piece, save and start the dhcp

daemon:

[student@pc-isotdaq-1]$ sudo vim /etc/dhcp/dhcpd.conf

host switch0 { # we want the switch to always have the same
ip address

option host-name "sw-isotdaq-dhcp";

hardware ethernet [get the MAC address of the vme
interface on the switch];

fixed-address 192.168.1.200;

}

[student@pc-isotdaq-1]$ sudo systemctl start dhcpd

Then let’s configure the switch to use dhcp instead of a static IP, by connecting using

the serial console (when we remove the IP we would otherwise lose contact with

the switch if we were connected over SSH):

[student@pc-isotdaq-1]$ sudo minicom

student@sw-isotdaq-00> configure

student@sw-isotdaq-00# delete interfaces vme unit 0 family
inet address 192.168.1.100/24

student@sw-isotdaq-00# set interfaces vme0 unit 0 family inet
dhcp

student@sw-isotdaq-00# show | compare

student@sw-isotdaq-00# commit

student@sw-isotdaq-00# exit

student@sw-isotdaq-00> show interfaces vme

86

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

2. Let’s have a quick look at DNS (domain name system) that is used for name

resolution in networking. By name resolution we mean resolving names, such as

pc-isotdaq-01 to an ip address, ip addresses to names and to find various types of

infrastructure information. Let’s explore this functionality briefly from pc-isotdaq-3:

[student@pc-isotdaq-3]$ host pc-isotdaq-1

[student@pc-isotdaq-3]$ host pc-isotdaq-01

What can you decipher from the response? Can you think of a reason as to why the

query went against the FQDN (pc-isotdaq-1.isotdaq.lab)?

How does the dns client know from who to ask about isotdaq.lab? Query for the NS

record for isotdaq.lab -domain

[student@pc-isotdaq-3]$ host -t ns isotdaq.lab

What if I wanted to send an email to someone at isotdaq.lab? How would I know to

which machines to send the SMTP traffic?

[student@pc-isotdaq-3]$ host -t mx isotdaq.lab

III. Bonus Questions

● What happens if you have a static entry in the ARP cache and the NIC for that target
computer is changed?

● How could you find the physical address of the Ethernet card installed on your computer?

● What is the purpose of the TTL field in the IP packet header?

● From pc-isotdaq-1, if you ping pc-isotdaq-2 using: ping -s 1800 pc-isotdaq-02 this
works, but ping -M do -s 1800 pc-isotdaq-02 does not work?

● You are the network administrator of a Class C network. Your network consists of 100
computers. Your ISP assigns the address 137.138.111.0/24 to your network. Your network
requires 10 subnets with at least 10 hosts per subnet. Which subnet mask should you
configure to meet this requirement?

● What is the dotted decimal notation of subnet masks for the following IP addresses?

o 192.168.10.1/23

o 5.5.5.5/16

o 203.40.21.58/27

o 9.2.3.1/9

● What is the prefix notation of the following subnet masks?

o 255.255.0.0

o 255.248.0.0

o 255.255.255.255

87

ISOTDAQ 2023 Lab 9: Networking for DAQ Systems

IV. Useful definitions and glossary

MAC address: (Media Access Control) unique identifier associated with a physical network
interface. Also named hardware address or Ethernet address in the case of an Ethernet device.

IP address: (Internet Protocol) numerical identifier associated with a device connected to an IP
network.

Most of the time the MAC address is provided by the device manufacturer and never changes, and
the IP address is the logical identifier associated to this device by the network manager according
to the purpose and location of the device.

Switch: network device that interconnects devices using frame-based switching at the data-link
layer (layer 2). For Ethernet, the frame header contains the destination MAC address which allows
the switch to determine the physical port to send frames to.

Router: network device that interconnects LANs using network-layer (layer 3) mechanisms. IP
makes use of IP addresses and routing tables to implement such mechanisms.

LAN: (Local Area Network) limited-area computer network. It usually consists of devices
interconnected via a network switch. Any device belonging to a specific LAN can communicate with
any other within this LAN without the need for routing mechanism. A LAN is equivalent to a
broadcast domain: broadcast messages reach every device in the LAN.

VLAN: (Virtual Local Area Network) broadcast domain logically created at the data-link layer from a
larger physical broadcast domain. For Ethernet, VLANs are implemented with a specific Tag field in
the frame header (802.1Q).

SNMP: (Simple Network Management Protocol) protocol to monitor and control network devices.
SNMP defines a structured organization of network-related information and the ways to request it
from a device. Typically network switches and routers implement SNMP to enable access to
monitoring information (traffic metrics, errors, etc.).

RRD tool: (Round-Robin Database Tool) time series database implementing a circular buffer
strategy to enforce constant footprint. Widely used to store monitoring information, especially for
networks.

QoS: (Quality of Service) the whole set of mechanisms used to monitor and control the
performance of networks. Metrics usually include throughput, latency, packet loss, etc.

DSCP: (Differential Service Code Point, or DiffServ) feature of the IP protocol to classify and
manage network traffic. DSCP uses 6 bits in the 8-bit DS field of the IP header to indicate the class
of a packet, and network devices may use this information to handle different classes of packets
with different policies. Examples: low latency, bandwidth constraint.

DHCP: Dynamic Host Configuration Protocol. Protocol that dynamically allocates unique IP
addresses and other network parameters (e.g. hostname, default gateway) to hosts on demand.

88

ISOTDAQ 2023 Lab 10: Microcontrollers

Lab 10: Microcontrollers Exercise

Tutor: Cristóvão Beirão da Cruz e Silva (c.beirao@cern.ch)

Developer: Maurício Féo Rivello (m.feo@cern.ch)

Introduction:

Microcontrollers are small computers with all its components (CPU, memories, peripherals)

integrated on the same chip. Apart from their capability of processing data, they are low power,

usually inexpensive devices that easily interface with sensors and actuators, making them perfect

to use in embedded systems.

In this lab we are going to learn the basics about microcontrollers, how to use and program one, as

well as common applications and explore the most relevant peripherals through the hands-on

exercises and a challenge.

Arduino:

Arduino is an open-source electronic prototyping platform based on easy-to-use software and

hardware. In short, it is the most popular microcontroller development board, with a lot of

"shields" (extension boards that you pile up on top of the Arduino) to add functionalities and

libraries to use the most common sensors and devices used with microcontrollers.

89

mailto:c.beirao@cern.ch
mailto:m.feo@cern.ch

ISOTDAQ 2023 Lab 10: Microcontrollers

Grove Starter Kit:

Together with the Arduino, we are going to use the Grove Starter Kit, which provides a few gadgets

(sensors, actuators and a LCD display) together with a shield and cables that provides a nice

plug-and-play interface to ease and speed up the process of wiring the gadgets together.

90

ISOTDAQ 2023 Lab 10: Microcontrollers

Setting up the Arduino.

In case you want to set up the Arduino on your own laptop, the Arduino official webpage provides

a very simple quick start guide. Basically you just have to download the software, plug the board

on the USB port and install it. For further details, visit: http://arduino.cc/en/Guide/HomePage

Before you start:

The Arduino software and drivers will be already configured on the lab PC. Plug the Arduino board

on the USB port of the PC and start the Arduino IDE (desktop shortcut). Select the Board you are

using (Uno) under the IDE Menu “Tools”. Then select the Port under the same menu. The Port

number depends on which USB the Arduino is connected to and it is listed after you plug it in.

Hands On Exercises

We are going to do a few exercises to learn the basic functions of Arduino and then, using

the hardware provided, we are going to implement a simple project to solve a challenge with what

we have learned so far. As you do the exercises, save your code because you might reuse it in the

project ;-)

Visit the site feo.dev/isotdaq for a summary of the functions that you will mostly use during

the exercises. For detailed information about the main functions from the Arduino libraries, please

refer to: www.arduino.cc/en/Reference

Exercise 1: Blinking a LED.

Blinking a LED is the microcontroller equivalent of printing “Hello World”. The basic structure of an

Arduino program is very simple: It must contain a setup() and a loop() function. Open the Arduino

software, start a new program and write the following structure:

void setup() {
...

}

void loop() {
...

}

The setup() function is executed once every time the Arduino is powered on. As the name

suggests, it should be used for setting up your application, like initializing classes and variables,

declaring pin modes, etc.

The loop() function keeps being executed in loop ad eternum. This is where the main logic of your

program should be.

To get started, let’s build a program to blink a LED. There is already a LED attached to pin 13 on

every Arduino. You should first of all declare the mode (output or input) of the pin to be used with

the following function:

91

http://arduino.cc/en/Guide/HomePage
http://feo.dev/isotdaq

ISOTDAQ 2023 Lab 10: Microcontrollers

pinMode([pin_number] , [OUTPUT/INPUT]);

In our case, the pin_number is 13 and the mode is OUTPUT. So to blink the LED we can write a

HIGH and then a LOW signal to the pin 13, adding a delay between each command.

digitalWrite([pin_number], [HIGH/LOW]);
delay([milisseconds]);

Now try to make yourself a program to blink the LED on pin 13 once every second.

Exercise 2: Reading the state of a Push-Button.

The same way we can declare a pin as output and write a state (HIGH or LOW) to it, we can also

declare one as INPUT and read its state with the following function:

boolean_variable = digitalRead(pinNumber);

It returns TRUE or FALSE (HIGH or LOW). Let's use it to read the status of the Push-Button from the

Grove kit, which can be connected to any of the digital pins of the Arduino. In the Grove shield,

these are the connectors marked with the letter D.

Use the code from exercise 1 and the LED to identify the pressing of the button.

Exercise 3: Serial communication.

In this exercise, we're going to use the Arduino Serial library to send and receive characters from

the PC using the Serial Monitor tool of the Arduino IDE. First thing to do in your code is to initialize

the Serial with the following command:

Serial.begin(9600); // (9600 is the baud rate).

As it only needs to be executed once, it should be on the setup() function. Now there are 3 more

important functions to learn. The available() returns whether there is a character available to be

read:

boolean_variable = Serial.available();

The read() reads into a variable a single character from the serial buffer, and the println() works like

in C, printing on the serial port a string. It also converts numbers into characters. The Serial library

is very handy and there are more functions. For reference visit:

http://arduino.cc/en/Reference/Serial

92

http://arduino.cc/en/Reference/Serial

ISOTDAQ 2023 Lab 10: Microcontrollers

byte inByte = Serial.read(); // reads into inByte a character from the buffer.
Serial.println("Hello World"); // Writes a string to the serial port.

Now let’s write a code that does the following:

1) Toggles the LED whenever the button is PRESSED DOWN. (Not when released)

2) Prints to the Serial port for how long the LED has been ON whenever it is turned OFF.

You can make use of one of the time functions, like micros(), which returns the amount of

microseconds since the microcontroller started:

unsigned long var = micros();

Once you succeed, what about controlling the LED from the Serial Monitor as well? Use the

described functions to try to control the LED from bytes sent to the Arduino from the Serial

Monitor.

Exercise 4: Reading an analog input.

The Arduino UNO has 6 analog inputs. Reading one of them is as easy as reading a digital pin. It

returns an integer value ranging from 0 to 1023. The scale varies from 0V to a reference voltage,

which is by default 5V (but can be changed). In short: 0 -> 0V; 512 -> 2.5V; 1023 -> 5V.

To read an analog pin, use the following function:

int integer_variable = analogRead(pin_number);

The Grove Starter Kit has four analog sensors: a sound sensor, a light sensor, a temperature sensor

and a rotary switch. Plug any of them into one of the connectors labeled with the letter ‘A’ and try

the following code (don’t remove the code from the previous exercises as it will be used again):

int analog_value;
void setup() {
Serial.begin(9600);

}
void loop() {
analog_value = analogRead(plug_number);
Serial.println(analog_value);
delay(200);

}

Open the Serial monitor and see the results and how they change when you interact with the

sensor used. Try the Serial Plotter as well.

93

ISOTDAQ 2023 Lab 10: Microcontrollers

Exercise 5: Interrupts

Note what happens when you try checking the time between presses of the button from exercise 3

while running the code from exercise 4. Did you note that the code on the loop cannot identify

properly when the button is pressed when the processor is “stuck” on the delay(200) function?

It happens because you are reading the button by polling it’s state at every loop. For critical

applications where you need a precise timed response, interrupts should be used instead.

I/O interrupts are implemented in a very simple way by Arduino. You can set up an interruption in

a pin using the following function (Arduino UNO only supports interrupts on the pins 2 and 3):

attachInterrupt(digitalPinToInterrupt(pin), function_To_Be_Called,
RISING/FALLING/CHANGE);

Now whenever the value of the pin rises or falls or changes (depending on your choice) the

function passed will be called. The name of the function is arbitrary and you should define it in

your code:

void function_To_Be_Called(){
// code to be executed on the interrupt
}

Reimplement the printing of the time in between presses of the button but now using interrupts

instead of polling.

94

ISOTDAQ 2023 Lab 10: Microcontrollers

Challenge: Measuring the acceleration of gravity.

In this challenge we are going to use all what we learned above to measure the acceleration of

gravity using a drilled bar that falls through an infrared beam. The space in between the first edge

of each hole is 7.2mm on average. The precise measurements can be found on feo.dev/isotdaq

We have an infrared LED and an infrared phototransistor that works like a digital input for the

Arduino (just like the push button). For a smooth drop of the bar, we can use an electromagnet

controlled from the relay board of the Grove Starter Kit.

Given all that we learned and the apparatus available, how could one calculate the acceleration of

gravity? For any help setting up the equipment, ask the tutor. And good luck! ☺

95

http://feo.dev/isotdaq

ISOTDAQ 2023 Lab 11: Storage

Lab 11: Storage Exercise

Overview
The aim of this lab is to provide an overview of the configuration and the evaluation of a storage

setup.

Objectives
• partition storage units

• setup raid systems

• performance measurements

• evaluate different raid strategies

• evaluate different storage technologies

Tools

dd

The linux dd tool allows you to make copies of files at a block level. Its basic syntax is :

dd if=/path/to/input/file of=/path/to/output/file bs=X count=Y

Where X is the block size of the individual transfers, and Y the amount of blocks you want to copy.

We recommend 32M as X value.

The seek option allows you to skip a certain amount of blocks at the start of the output.

The skip option allows you to skip a certain amount of blocks at the start of the input.

The oflag is used to set particular flags that are used on the output stream. In our case the ‘direct’

option is useful. It forces the operating system to not use the write behind cache on the stream.

fdisk and sfdisk

Be very very careful. These tools can very easily wipe out the entire operating system if used on

the wrong disk. Make sure you are not working on /dev/sda.

The fdisk tool is used to manipulate the partition table of a disk. The tool has an interactive shell

and the important commands for the following exercises are:

n: create a new partition

d: erase a partition

w: write the new partition table to disk

p: show the current partition layout

h: help

The sfdisk tool allows you to dump the partition table of a disk into a file using the -d option, and

96

ISOTDAQ 2023 Lab 11: Storage

then to apply the same schema to another disk using the redirect operator (<).

For example: sfdisk -d /dev/isotdaq/disk1 > file //to dump the partition table into file

sfdisk /dev/isotdaq/disk2 < file //to read a partition table from a file

mdadm

The mdadm tool is used to manipulate the Linux software raid devices. Its main running modes are

'Create' and 'Manage'. In order to create a new raid, the 'Create' mode is obviously to be used. You

need to provide it with information about the raid level you want to create, and on which device it

will reside.

Create a raid array:
mdadm --create=md<x> --level=<x> --raid-devices=<N> <device1> <device2> …
<deviceN>

Stop a raid array:
mdadm --misc --stop /dev/md/md<x>

fio

Fio is an advanced tool for characterising IO devices. It can be used to simulate different IO loads

and profiles and evaluate disk performances. In our case we will use it to measure iops at a fixed

block size. The following syntax will be enough for all of the exercises:

fio --rw=<opt1> --bs=<opt2> --runtime=<opt3> --filename=<opt4> --direct=1
--ioengine=libaio --name=isotdaq

opt1: randread or randwrite

opt2: 4096

opt3: 60

opt4: /dev/isotdaq/disk<X> or /dev/md/md<Y>

Exercises

Exercise 1: Determine the raw throughput of a single disk
For this exercise use dd to measure the throughput of one of the hard disks in the machine for

read and write performance. (with bs=1M count=1K for example)

For write performance use /dev/zero as input file and /dev/isotdaq/disk<N> as output.

For read performance use /dev/isotdaq/disk<N> as input file and /dev/null as output.

Use the seek and skip options of dd to measure the performance at the end of the disk too. (with

skip/seek = 1800K)

Use oflag=direct during writing.

97

ISOTDAQ 2023 Lab 11: Storage

Questions:

• What is the read/write throughput of the disk in MB/s?

• The oflag=direct option circumvents the operating system cache for the disk. Why is this

important for this measurement?

• Which disk corresponds to which physical disk inside the enclosure?

• Optional: Usually, for disk based storage, the write throughput is the same as the read

throughput. Do you have any idea why it is different in this case?

Exercise 2: Determine the IOPS of a single disk
For this exercise use the fio tool to measure the random read and write Input Outputs Per Second

(IOPS) of a single disk.

Good values for the parameters are a run time of 60s and IO size of 4096. For reading use

--rw=randread. For writing use --rw=randwrite.

Questions:

• What are the values for random reading and random writing for these disks?

• Why are these important values?

• Why are the reading and writing values different?

• Using the result from Ex.1: Calculate the IOPS of the throughput measurement. Why are

the values for random IO so much smaller?

Exercise 3: Partitioning the disks
For the purpose of this exercise, we will create 4 partitions on each disk. They will later be used to

host different raid types.

Create 4 partitions on /dev/isotdaq/disk1 using fdisk. The partitions should be of type ‘primary’,

and 2 Gb each.

After this you can either use fdisk to create the same partitions on the other 3 disks or use sfdisk to

dump the layout of the first disk and import it to the other three disks.

Questions:

• Make sure that /dev/isotdaq/disk<0-3>part<1-4> exist

98

ISOTDAQ 2023 Lab 11: Storage

Exercise 4: Creating the raid arrays

You will now create 4 different kinds of raid sets to measure their different properties. Use mdadm

to create the following raids:

Raid0 on disk1part1, disk2part1, disk3part1, disk4part1

Raid1 on disk1part2, disk2part2

Raid5 on disk1part3, disk2part3, disk3part3, disk4part3

Raid6 on disk1part4, disk2part4, disk3part4, disk4part4

Hint: To create a raid set of a particular kind use

mdadm --create md<x> --level=<x> --raid-devices=<N> <device1> <device2> … <deviceN>

99

ISOTDAQ 2023 Lab 11: Storage

Raid levels are 0, 1, 5 and 6. For easier recognition you can use the same number <x> for the raid

level and the device name.

You can create and initialize multiple arrays in parallel.

Questions:

• Use ‘cat /proc/mdstat’ to follow the initialisation of the raid arrays.

• Why do raid1, raid5 and raid6 need initialisation and raid0 does not?

• Explain the different sizes of the finished raid sets.

Exercise 5: Performance Measurements
In this exercise you are going to explore the different performance values of the different raid

types. Use dd and fio like in exercise 1 and 2 to determine the throughput and IOPS of the four raid

sets you created earlier. For the throughput you can skip the measurement for the end of the

device (Why?).

Remember to use /dev/md/md<x> for your measurements.
Questions:

• What values did you expect for the different raid sets?

• Is what you got coherent with what you expected?

• Which raid would you use for a data acquisition system?

• What would you use for a normal file system/database?

Exercise 6: Failures
Remove disk1 and check if you can still access all your raid sets. Repeat the performance
measurements for the raid sets that still work.

• Explain why the performance of all raid sets has deteriorated.
• Would you still choose the same raid type for your data as in exercise 5?
• Why does raid 6 exist?

100

ISOTDAQ 2023 Lab 12: DAQ Online Software

Lab 12: DAQ Online Software

1. Outline

The aim of this laboratory is to develop tools to control, configure and monitor a DAQ system. The

system is composed of different independent modules that simulate data acquisition applications.

The control system steers the behavior of these applications via the Run Control.

Students will develop the system relying on the control, configuration and monitoring capabilities

provided by a simplified version of a real DAQ system. This consists of two readout modules

(ReadoutInterface01 and ReadoutInterface02), one event builder application (EventBuilder01) and

one data logging system (FileWriter01). Figure 1 shows a schematic view of the modules used in

this lab.

Figure 1: Diagram of the DAQ system used in the lab

Readout modules generate random data and write them to a buffer, waiting to be processed by

the event builder application. This is similar to emulating a readout system from the DAQ of any

particle physics experiment. Finally, once the events have been built, the FileWriter application

writes them to permanent storage for offline analysis.

In addition, students will learn about the most common situations in controlling DAQ applications

in a distributed environment and how they can be addressed. They will also learn about the main

capabilities provided by the online software framework in a DAQ system.

2. DAQling framework

For this laboratory the DAQling framework is used. DAQling is an open-source lightweight C++

software framework, to be used as core for data acquisition systems of small and medium-sized

experiments such as NA61/SHINE or FASER.

101

ISOTDAQ 2023 Lab 12: DAQ Online Software

The framework offers a complete DAQ ecosystem, including a communication layer based on the

widespread ZeroMQ messaging library, configuration management based on the JSON format,

control of distributed applications, extendable operational monitoring with web-based

visualization, and a set of generic utilities. The framework comes with minimal dependencies, and

provides automated host and build environment setup based on the Ansible automation tool.

Finally, the end-user code is wrapped in so-called “Modules”, that can be loaded at configuration

time, and implement specific roles.

The DAQling framework together with its detailed documentation can be found at:

https://gitlab.cern.ch/ep-dt-di/daq/daqling

https://daqling.docs.cern.ch/

3. DAQling modules

The DAQling building block is the “Module”, a plugin that can be loaded at run-time by the bare

daqling executable, which then acquires its functionalities.

A Module is a class, inheriting a set of default methods from the DAQProcess base class, such as

the runner(), start() and stop().

Since we want a uniform way to control different processes, DAQling modules implement the

Finite State Machine (FSM) paradigm with both transition commands and states that uniquely

identify a specific behavior. All the applications in the system must behave according to this FSM.

Thus, the two main concepts of the FSM are:

1. Transition commands

add, boot, configure, start, stop, unconfigure, shutdown, remove

2. States

NOT_ADDED, ADDED, BOOTED, READY, RUNNING

Figure 2 shows a schematic view of the main transition commands and FSM states that are

implemented in DAQling modules.

102

https://gitlab.cern.ch/ep-dt-di/daq/daqling
https://daqling.docs.cern.ch/

ISOTDAQ 2023 Lab 12: DAQ Online Software

Figure 2: Diagram of the main transition commands and FSM states of a DAQling module

3. Run Control

The distributed control system has to manage and gather information from a set of modules

running on different machines. All these modules have to be properly configured and running at

the same time to provide meaningful data. This introduces the need for an entity to manage the

control flow: Run Control - an application that receives FSM commands and forwards them to a set

of children applications. The Run Control application (depicted in figure 3) must also check the

proper execution of the FSM transitions, deal with common problems, etc.

Figure 3: Diagram of the Run Control system

103

ISOTDAQ 2023 Lab 12: DAQ Online Software

The Run Control implements the same interface as every other application and is able to receive

commands.

During this exercise the Web based application (figure 4) will be used as a Run Control. It uses the

“Supervisor” tool (http://supervisord.org/) as process control system. The Web Interface gives the

possibility to send commands to all the processes as well as monitor their states.

Figure 4: DAQling Web Interface

In addition, a Run Control Tree is used to group different physical/real components of the system

into abstract groups. This makes it easier to propagate the same command among the components

of the same group (leaves). A diagram depicting the Run Control Tree is shown in figure 5.

Figure 5: Diagram of the Run Control Tree

104

http://supervisord.org/

ISOTDAQ 2023 Lab 12: DAQ Online Software

4. Monitoring tools

It is extremely important to monitor the data that has been collected as well as the operational

information (e.g. event rates, health of the computing cluster, etc.) during data taking.

Each DAQling Module has its own instance of Statistics class which provides the interface for

metrics monitoring. While defining the Module you can register the metric using the template

function:

void registerMetric(T* pointer, std::string name, metrics::metric_type mtype)

Three parameters are needed:

● pointer - pointer to the variable storing the metric value

● name - name of the metric published to database

● mtype - type of the metric

It is useful to note that there are 4 possible metrics types:

● LAST_VALUE - measure the current value of metrics`

● ACCUMULATE - accumulate the current variable value to metric value and reset the variable

● AVERAGE - calculate the average value of metric over given time interval

● RATE - calculate the rate over a given time interval

More details are defined in the daqling::core::metrics namespace.

The default metrics visualization tool is Grafana (https://grafana.com/) connected to InfluxDB

(https://www.influxdata.com). An example of visualing a metric in Grafana is shown in figure 6.

Figure 6: Example of Grafana monitoring

105

https://grafana.com/
https://www.influxdata.com

ISOTDAQ 2023 Lab 12: DAQ Online Software

Controlling data acquisition modules

The goal of the following two exercises is to understand how to control different data acquisition

applications (e.g. readout interfaces, event builder, file writer, etc.), and understand the concept of

FSM and Run Control application.

Exercise 1:

Run the example application, get familiar with the code and investigate the behavior of the

modules.

[isotdaq@lab]$ cd online-software

[isotdaq@online-software]$ source cmake/setup.sh

[isotdaq@online-software]$ cd scripts/ControlGUI/

[isotdaq@ControlGUI]$./run.sh

Open Firefox and open the "DAQling Web Interface” at http://localhost:5000.

Choose the configuration named “ex1” and click on the open lock pad on the top-right to take

control of the system.

Explore the “Control tree”, “Available commands” and “Log file” and bring the system to “Running”

state.

The selected configuration can be found at:

[isotdaq@lab]$ cd online-software/configs/ex1/

The config.json file defines which modules are loaded. It is composed of any number of

“components”. The "type" field of component is the name of module which you can find here:

[isotdaq@lab]$ cd online-software/src/Modules/

As an example, check out the ReadoutInterface module to get an idea .

All the modules inherit the DAQProcess class. This can be found here:

[isotdaq@lab]$ vim online-software/src/Core/DAQProcess.hpp

Exercise 2:

Repeat the previous exercise with a different configuration file: “ex2”.

Localize the bugs and fix them. Remember that all the modules should follow the transition

commands and states defined in the FSM. Therefore, any inconsistent state should be fixed. Tip:

the bug should be identifiable through the log files.

106

http://localhost:5000

ISOTDAQ 2023 Lab 12: DAQ Online Software

Instruction for compiling DAQling:

[isotdaq@lab]$ cd online-software

[isotdaq@online-software]$ source cmake/setup.sh

[isotdaq@online-software]$ cd build && make -j

Operational monitoring of the data acquisition system

Exercise 3:

Select now the InfluxDB and Grafana configuration file: “ex3”.

Open a new tab in Firefox and open the Grafana dashboard (http://localhost:3000) named

“DAQling demo”.

Go back to the Web Interface application (http://localhost:5000) and start the modules (go to

“Running” state).

Check the plots on the Grafana dashboard and their behavior in different modules states.

Exercise 4:

This exercise contains CPU and Memory consumption variables already prepared. The goal is to

create a new Grafana dashboard to visualize them.

Select the configuration file “ex4”.

The following are guidelines on how to add a new dashboard into Grafana:

● Create a new dashboard

● Add a new panel

● Choose variable to query

Tip

The variable name is defined in the Readout Interface file.

Exercise 4b (bonus):

With the help of the Grafana dashboard, compare the results of the configuration files “ex4” and

“ex4_bonus”.

Tip

There is something wrong with the data displayed on Grafana. Find the origin of the difference and

implement a solution to fix it.

107

http://localhost:3000
http://localhost:5000

ISOTDAQ 2023 Lab 12: DAQ Online Software

Configuring a distributed system

Exercise 5:

The goal of this exercise is to combine several applications running on different host machines,

controlling them coherently under a unified framework and monitor the overall status of the

system.

Modify the configuration file from exercise 5 to have the readout applications running on two

different host machines. Use the Web Interface to start the data acquisition.

108

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

Lab 13: System on Chip (SoC) FPGA

(Version: 2.0)

Tutor:

Johannes Wüthrich (ETHZ / CERN) (johannes.wuethrich@cern.ch)

Lab Developer (Version 2.0):

Johannes Wüthrich (ETHZ / CERN) (johannes.wuethrich@cern.ch)

Lab Developers (Version 1.2):

Manoel Barros-Marin (CERN) (manoel.barros.marin@cern.ch),

Elena-Sorina Lupu (Caltech) (eslupu@caltech.edu)

109

mailto:johannes.wuethrich@cern.ch
mailto:johannes.wuethrich@cern.ch

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

1. Introduction

The aim of the SoC FPGA laboratory at the International School Of Trigger Data AcQuisition

(ISOTDAQ) is to provide students a brief overview of the different stages in the SoC FPGA design

workflow, as well as the knowledge when a SoC FPGA is the most appropriate core for their

project. After the completion of the lab, the students should be able to understand the interaction

between the two main building blocks of a SoC FPGA, the FPGA fabric and the embedded

Processor (embedded CPU), and assess the challenges of implementing such a system. The

students should also gain a high level understanding of the AXI and AXI-Stream interfaces used in

the project and the main differences between the two protocols.

1.1 SoC FPGA

Processors (CPU) and Field Programmable Gate Arrays (FPGAs) are at the core of most Trigger

DAQ systems. By integrating the high-level management capabilities of a processor and the

real-time capabilities, extreme data processing, and interface functions of an FPGA into a single

device we end up with a more powerful embedded computing platform. System on Chip (SoC)

FPGA devices integrate both processors and FPGA architectures into a single chip. Consequently,

they provide higher integration, lower power, smaller board size and higher bandwidth

communication between the processor and FPGA. They also include a rich set of peripherals,

on-chip memory, customizable logic fabric and high speed transceivers. As a result of these

qualities, SoC FPGA devices are becoming more and more popular among digital electronics and

software designers, especially because they also exist in a wide range in terms of cost and

performance.

Figure 1: Model of SoC FPGA

110

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

1.2 SoC FPGA workflow

A typical SoC FPGA workflow is illustrated in Figure 2.

Figure 2: SoC FPGA workflow

111

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

2. Lab Setup

2.2 Specifications

The goal of this lab is to implement a data processing chain for a small energy dispersive X-Ray

spectroscopy (EDXS) experiment. In this experiment a material sample is targeted by a particle

beam. These particles kick out electrons from orbital shells. When electrons from higher orbitals

relax into the empty spots, they emit characteristic X-Ray photons. Figure 3 left shows the atomic

principle of EDXS.

Figure 3: Left: Principle of EDXS – Right: Example EDXS spectrum1 2

The energy of these X-Ray photons are clearly defined for each type of atom. Therefore, by

measuring the energy spectrum of emitted X-Rays, the different atomic elements in our sample

can be identified. Figure 3 right shows an example spectrum obtained from an EDXS

measurement.

In our experiment, the emitted X-Rays are detected with a SiPM coupled to a scintillator crystal.

The resulting SiPM pulses are then digitized and further processed in a digital data processing

chain, which is made up of the following components:

● Pulse Threshold: Applies a threshold to the incoming signal in order to detect pulses.

● Pulse Integrator: Calculates the area under the pulse curve, which is proportional to the

X-Ray photon energy.

● Multi Channel Analyzer (MCA): Generates a histogram of the integrated pulse areas. This

will be our EDXS spectrum.

● CPU: The embedded processor will control all the data treatment blocks, read out the

spectrum from the MCA and plot the resulting spectra.

Figure 4 shows a high-level view of the system to be implemented.

2 Published under CC BY 3.0 – https://commons.wikimedia.org/wiki/File:EDS_-_Rimicaris_exoculata.png

1 Published under the GFDL – https://commons.wikimedia.org/w/index.php?curid=3241031

112

https://commons.wikimedia.org/wiki/File:EDS_-_Rimicaris_exoculata.png
https://commons.wikimedia.org/w/index.php?curid=3241031

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

Figure 4: High-level view of the system to be implemented

As this is ISOTDAQ we can sadly not have an entire particle beam setup to do EDXS. Therefore,

instead of measuring real SiPM pulses, we have an additional block in our FPGA (Double

Exponential Pulse Generator) which generates fake pulses, emulating the SiPM. Appendix A)

shows how the generated signals look like, and the function of each block in the data processing

chain.

In the rest of the lab, we will implement the system shown in Figure 4 as a System-On-Chip on a

Xilinx FPGA. The communication between the block will happen via AXI and AXI-Stream

interfaces. In Figure 4, AXI interfaces are represented by the bold arrows, while AXI-Stream

interfaces are represented by the thin arrows. We will later see what these interfaces do in detail.

2.3 Hardware

2.3.1 PYNQ-Z2 Board

The data processing electronics of our emulated HEP experiment is based on the PYNQ-Z2 board ,3

which is a low-cost and high-performance System On Chip FPGA devkit. This board is based on the

Xilinx Zynq-7000 family, featuring an integrated dual-core ARM Cortex-A9 processor with

Xilinx7-series Field Programmable Gate Array (FPGA) logic.

The PYNQ-Z2 Board takes full advantage of the features of the Zynq-7020 SoC. It has 512MB DDR3

SDRAM and 16MB QSPI Flash on board and a rich set of peripherals including USB-to-UART,

USB-Host, 10/100/1000Mbps Ethernet, HDMI, JTAG and RGB LEDs. The board also makes many of

the ZYNQ IO-Pins available either via Pmod ports, Arduino compatible headers or a Raspberry Pi

compatible header. This allows the direct use of many Ardiuno shields or Raspberry Pi hats. The

3 https://www.tulembedded.com/FPGA/ProductsPYNQ-Z2.html

113

https://www.tulembedded.com/FPGA/ProductsPYNQ-Z2.html

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

PYNQ-Z2 Board is capable of running the Linux operating system. A Linux distribution based on

Ubuntu with all the necessary drivers is provided as part of the PYNQ environment and can be

downloaded from the manufacturer website. An image of the PYNQ-Z2 Board, highlighting its

main components, is illustrated in Figure 5.

Figure 5: PYNQ-Z2 board overview

2.3.2 Laptop

A laptop / computer is used for running the EDA software necessary for designing our

System-on-Chip. The laptop is further used to access the online interface running on the

embedded CPU.

2.3.3 Miscellaneous

The rest of the hardware components required for this lab are the following:

• Micro-USB to USB cable (PYNQ-Z2 power) (see Figure 6)

Figure 6: Mini-USB to USB cable

114

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

• RJ45 CAT5e cable (PYNQ-Z2/Laptop communication) (see Figure 7)

Figure 7: RJ45 CAT5e cable (Ethernet cable)

2.4 Gateware

A typical SoC FPGA GateWare (GW) is composed of two main parts: On one hand, a representation

of the SoC with the embedded CPU and its peripherals (e.g. I2C, timers) and on the other hand,

the FPGA fabric and its hard blocks (e.g. BRAMs, Multi-Gigabit Transceiver, Multipliers etc.).

For this lab, you have to implement the GW for the PYNQ-Z2 board. As previously mentioned, the

PYNQ-Z2 features a Xilinx Zynq SoC FPGA . Therefore the Vivado development tools are used4

throughout this lab, provided by Xilinx for FPGA and SoC FPGA development.

2.4.1 SoC

The modern approach for implementing the SoC on a high level, is through graphical schematics

and wizards. The use of graphical representations facilitates the design of complex and large

architectures. An example of an SoC FPGA schematic and wizard is illustrated in Figure 8.

Figure 8: SoC FPGA wizard (left) & schematic (right) example

2.4.2 FPGA fabric

The individual modules in the FPGA fabric (also called IP cores) are usually implemented using a5

Hardware Description Language (HDL), such as Verilog or VHDL. While these languages look a bit

like programming languages, they are not. Consider the following fundamental differences

between programming and writing hardware:

5 IP here stands for Intellectual Property. Usually developing such blocks requires a large amount of effort and
therefore companies heavily guard the source files of these blocks.

4 There are other vendors available, such as Altera (Intel) or Microsemi.

115

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

● Programming: You define instructions which are executed by a processor / CPU one after

another.

● Writing Hardware: You are describing a logical circuit, where all the elements are running

in parallel.

In some specific cases, it may be interesting to implement these modules using other techniques

(e.g. schematics, high-level synthesis). An example of VHDL code is illustrated in Figure 9.

Figure 9: VHDL code example

2.4.3 AXI Interfaces

Our final system will be made up of multiple blocks, each block with a specific function. As

mentioned before, these blocks need a way to communicate with each other. We can in general

distinguish two different types of data transfers between blocks:

● (High data rate) Point-to-Point communication: In this case, the data will follow a

predefined path and flow from one block (sender) to the next block (receiver). You might

think of this as a single (unidirectional) high-way, going from one city to another city.

● (Low data rate) N-to-M communication: In this case, many blocks are connected together

on the same communication channel and a data transmission might happen between any

two blocks . You could think about this as a street network in a city, where you can go from6

any address (any building) to any other address in the city.

6 This is not strictly true, as in some implementations (including AXI), each interface either has the role of a controller
(which can initiate transactions) or a responder (which only responds to transactions).

116

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

In modern Xilinx based systems, these two forms of communication are implemented via

interfaces defined in the Advanced eXtensible Interface (AXI) protocol, developed by ARM as part

of their Advanced Microcontroller Bus Architecture (AMBA). The AXI protocol defines two

different types of interfaces :7

● AXI Stream Interface: This implements the point-to-point communication mentioned

above. AXI Stream interfaces are very simple to implement. In their most simple form they

consist of two hand-shake signals plus N data signals. You would use a stream interface,

when you want to make a fixed and unidirectional link between two blocks which should

support high data rates. In our project, we for example use an AXI Stream Interface to

transmit the data samples from the Pulse Threshold to the Pulse Integrator block. Properly

implemented, AXI Stream Interfaces allow transmitting data on every clock cycle, hence

the high data rate. Figure 10 shows a simple AXI Stream transaction.

Figure 10: Left: AXI Stream timing diagram – Right: AXI Stream connections8 9

● AXI Interface: This implements the N-to-M communication mentioned above. AXI

implements a bus structure, which means that transactions include not only data, but also

an address corresponding to the data to be accessed. There are two different types of data

transfers: Read operations and Write operations. During a Read operation, a controlling

block sends out an address from which it wants to read data. A responding block, to which

this address belongs, then responds with the corresponding data. During a Write

operation, a controlling block sends out some data and an address, to which it wants to

write this data. The responding block, to which this address belongs, then receives the

data to be written and stores it locally. Given this type of question and response style

communication, AXI data transfers usually take up multiple clock cycles. Figure 11 shows a

high level view of AXI read and write transactions.

9 From https://zipcpu.com/dsp/2020/04/20/axil2axis.html

8 Published under CC BY-SA 4.0 – https://en.wikipedia.org/wiki/File:AMBA_AXI_Handshake.svg

7 Technically there are three protocol definitions in the AXI specifications, the third one being the AXI Lite Interface
which implements a subset of the full AXI Interface functions. But the exact differences between AXI and AXI Lite go
beyond the scope of this lab. If you are curious, ask your tutor.

117

https://zipcpu.com/dsp/2020/04/20/axil2axis.html
https://en.wikipedia.org/wiki/File:AMBA_AXI_Handshake.svg

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

Figure 11: Left: AXI read transaction – Right: AXI write transaction10

2.5 Software

The embedded CPU of the SoC requires software for performing the tasks assigned to it. There are

two main approaches when implementing software for a SoC. This software can be either

stand-alone or executed over an Embedded Operating System (EOS), such as embedded Linux. As

previously mentioned, the SoC FPGA of our emulated experiment is based on a Xilinx Zynq

SoC/FPGA. Xilinx, as part of the Vivado design suite, supplies a dedicated SDK for developing

software in the stand-alone approach. In our case we will be using the EOS approach, making use

of the Linux operating system supplied as part of the PYNQ environment. PYNQ is an open-source

project from Xilinx, which makes it easy to get started with Xilinx based SoC, and which can be

easily programmed in Python (hence the P in PYNQ) .11

2.5.1 Stand-alone

In the stand-alone approach, user software is directly executed on the embedded CPU, just having

the software drivers between the hardware and the software scripts. This approach is very useful

when working with single-threaded or real time systems, as it simplifies the implementation and

enables time determinism. The different tiers of the stand-alone software approach are illustrated

in Figure 12.

Figure 12: Different tiers of the stand-alone software approach

11 http://www.pynq.io/home.html

10 Published under CC BY-SA 4.0 – https://en.wikipedia.org/wiki/File:AXI_read_channels.svg and
https://en.wikipedia.org/wiki/File:AXI_write_channels.svg

118

http://www.pynq.io/home.html
https://en.wikipedia.org/wiki/File:AXI_read_channels.svg
https://en.wikipedia.org/wiki/File:AXI_write_channels.svg

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

Stand-alone software is often written in C or C++, sometimes making use of a (very slim) real time

operating system (RTOS), such as FreeRTOS . This gives you the biggest amount of flexibility, but12

comes at the price of increased effort for software development.

2.5.2 Embedded Operating System

The use of an embedded operating system (EOS) is required (or highly recommended) when

implementing systems running several software processes in parallel. In this case, the integrated

arbitration capabilities of the EOS will handle the execution of the parallel processes without

requiring interaction from the developer. This approach comes at the cost of a more complex

setup. Adapting for example a Linux kernel for a SoC is not a trivial task and requires extensive

previous knowledge. Luckily SoC / FPGA manufacturers often supply example implementations of

such embedded operating systems. This is the case for the PYNQ environment used in this lab,

which is based on Linux. The different tiers of the EOS approach are illustrated in Figure 13.

Figure 13: Different tiers of the EOS approach

12 https://www.freertos.org/

119

https://www.freertos.org/

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

3. Lab Exercises

3.1 Hardware assembly

The hardware connection of the SoC FPGA lab is illustrated in Figure 14.

Figure 14: SoC FPGA lab hardware

• Ensure that the PYNQ board is connected to the Laptop / Computer via the Ethernet cable.

We will later access and program the FPGA via the Jupyter web interface running under the

Linux operating system on the embedded ARM CPU.

• Ensure that your board is powered on by connecting the Micro-USB to USB cable from the

computer to the JTAG / UART Micro-USB socket. This connection provides power to the PYNQ

board and would allow us to interact with the serial interface connected to the CPU (See

Figure 15).

Figure 15: Ethernet and Micro-USB connection to the PYNQ-Z2

120

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

3.2 Gateware development

The Gateware for this lab is developed using Vivado, the vendor specific EDA software from Xilinx.

3.2.1 Project setup

1. Open an Ubuntu terminal (CTRL+Alt+T).

2. First we create a new folder for your project, by using the following terminal commands:

mkdir -p /home/isotdaq/SoC-Lab/Group[N]
cd /home/isotdaq/SoC-Lab/Group[N]

Please replace [N] with the number of your lab group!

3. Type the following to launch the Vivado Design Suite:

vivado &

4. Create a new project and call it SoC-LAB-Group[N].

The location of your project should be /home/isotdaq/SoC-Lab/Group[N]

Click Next and tick RTL Project as well as Do not specify sources at this time.

Press Next, and now you will be asked to specify the hardware for which you are

developing a project. Under Boards, select the pynq-z2 entry (as shown in Figure 16).

Press Next and you see a summary of the new project as well as the selected hardware.

Continue with Finish.

Figure 16: Hardware Selection

The starting page of the project should be like in Figure 17.

121

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

Figure 17: Initial Project Structure

3.2.2 Block design for SOC

1. Create the Block Design

On the left of the window, in the Flow Navigator, choose Create Block Design. You can

leave the default name and click OK.

2. We prepared multiple IP cores for you, which will implement the functions of the data path.

In order to use them later on, we need to add the prepared IP cores into the repository.

In the menu go to Tools -> Settings and in the settings window to IP -> Repository.

Use the + button to add the following folder to the available repositories:

/home/isotdaq/IP-Repository

Click OK twice to close the settings window.

Figure 18: Settings view to add an IP Repository

122

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

3. First we will add the representation of the embedded ARM CPU to our block design.

In the Diagram panel, use the + button to add our first block, the ZYNQ7 Processing

System. Select it and press Enter.

Figure 19: Adding the ZYNQ7 Processing System block

At the top, Vivado now proposes to Run Block Automation, which will do some default

configuration of the system. Run this and confirm with OK in the dialogue.

Double click the ZYNQ7 Processing System block, which opens its configuration window.

Have a look at the presented schematic view of the embedded CPU and

discuss it with the tutor. Also have a look at the Clock Configuration. Finally, close the

window with OK.

4. Creating the AXI interconnect structure which allows us later to communicate from the CPU

to the data processing blocks.

Add an instance of the AXI Interconnect block. This block will later enable the

communication from the CPU to the data processing blocks.

Double click the AXI Interconnect block and set Number of Master Interfaces to 3 as well

as Interconnect Optimization Strategy to Minimize Area. Confirm with OK.

Now connect the M_AXI_GP0 port on the ZYNQ7 Processing System to the S00_AXI port

on the AXI Interconnect.

At the top Vivado now proposes to Run Connection Automation. Click on it and select All

Automation at the top of the list. Start the process by clicking OK.

The Run Connection Automation makes a lot of default connections. In our case of a

simple system these connections are ok. But in a more complex system, these

connections would need to be made manually!

Now your block diagram should look like in Figure 20.

123

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

Figure 20: Block diagram after adding the interconnect and the connection automation

Note: If your block diagram looks very messy with many lines crossing each other, you can

manually move the blocks around to re-arrange them better. You can also use the Regenerate

Layout button at the top of the Diagram panel.

3.2.3 Block design for the data processing in the FPGA fabric

Now it is up to you to add the necessary blocks to create the data processing chain. We

implemented the following blocks for you to use:

● DoubleExpPulseGenerator: Generates the fake SiPM signal pulses.

● PulseThreshold: Applies a threshold to the recorded pulses.

● PulseIntegrator: Calculates the area under the curve for each pulse passing the threshold.

● MultiChannelAnalyzer: Creates a histogram of the calculated pulse areas.

In order to implement the data processing chain, follow these steps:

1. Add all the blocks to the block diagram and arrange them in the correct order.

2. Properly connect the AXI Stream interface in the correct order. Always connect a transmitter

port M_AXI to receiver port S_AXI.

3. Do not connect the control ports (S_CTRL) and the clock (ACLK) and reset signals (ARESETN)

signals manually. But do Run Connection Automation at the end which should connect all

these signals automatically.

Your block diagram should now look like in Figure 21.

124

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

Figure 21: Block diagram after adding the full data chain

Once you are done, show and discuss your block diagram with the tutor.

3.2.4 Assign addresses, create external ports & add constraints

1. On the main AXI bus we now need to verify that each component has an address assigned.

In the same panel as the Diagram view, go to the Address Editor tab.

If there are entries under Unassigned: Right click on one of them and select Assign All.

This will attribute addresses to each AXI interface.

In the end, the Address Editor view should look similar to Figure 22.

2. Configure the RUNNING signal of the MultiChannelAnalyzer block to connect to an LED.

Go back to the Diagram tab.

Right click on the unconnected RUNNING pin of the MultiChannelAnalyzer and select

Make External.

In the External Port Properties panel (on the left), rename the new external port to

RUNNING_LED.

In the Source tab (above), right click on Constraints -> constrs_1 and click Add Sources.

Select Add or create constraints and click Next. Click Add Files and select the following file

/home/isotdaq/Constraints/Pins.xdc

Click OK and make sure to check Copy constraints files into project before clicking Finish.

3. Create the VHDL wrapper of the block design. This is necessary, as the synthesizer only works

with text input files. So the graphical block design needs to be translated into a textual

representation.

125

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

In the Sources tab under Design Sources, right click on the design_1 block design.

Select Create HDL Wrapper and click OK.

Figure 22: Address Editor when all blocks have an assigned address range

3.2.5 Synthesis, implementation & static timing analysis

Finally it is time to run the Synthesis, Implementation and Bitstream generation. You can think

about these steps like compiling a C-Program, but for FPGA designs.

Before you do this next step, ask the tutor to have a quick look at your system.

In the Flow Manager, click on Generate Bitstream.

If asked for it, click Save.

Click Yes when asked about No Implementation Results available.

Finally, click OK in the Launch Runs dialogue.

The entire process will take 15-20 minutes, depending on the speed of your computer.

Time to grab a snack / drink and discuss the following points with your tutor:

● The use of the constraints file (Pins.xdc)

● Synthesis

● Implementation (also called Place & Route)

● Bitstream generation

You can now also have a look at how the PulseIntegrator is implemented using the VHDL

hardware description language. To do so:

1. Right click on the PulseIntegrator block.

2. Select Edit in IP Packager which opens a new Vivado project with the source files of the

PulseIntegrator block.

3. In the Sources panel under Design Sources open the PulseIntegrator_v1_0.vhd file .13

13 The file might have a slightly different name, depending on the exact version of the PulseIntegrator block. In doubt,
ask your tutor.

126

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

4. Have a look at the VHDL code. Can you understand something? Discuss the

implementation with the tutor.

5. To return to the block diagram, close the IP Packager project by clicking the X on the right

end of the blue bar.

3.3 Software development

Note: You can already start working on the Python readout software while the synthesis and

implementation are still running. In this case, you just have to postpone the copying of the .bit file

until after the implementation has finished.

Figure 23: A view of the template Jupyter notebook.

3.3.1 Basic functionality

We will implement the control and readout software with Python. The PYQN system comes with a

pre-prepared Linux operating system, which runs on the embedded ARM processor. The Linux

system also includes a Jupyter server, which we can use to edit and run our Python code.

Follow these steps to create your own Jupyter notebook:

1. Open Firefox and go to the following IP-Address: http://10.10.0.100. The password is xilinx.

You will see the home screen of the Jupyter instance running on the embedded ARM

processor.

2. Go into the ISOTDAQ-Lab13 folder and create a new folder named Group[N] with [N] the

number of your group.

3. Duplicate the Lab13-Template.ipynb and move the new copy to your folder Group[N].

4. Now go into your Group[N] folder.

127

http://10.10.0.100

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

Upload the generated design_1_wrapper.bit file.

You can find it under:

/home/isotdaq/SoC-Lab/Group[n]/SoC-Lab-Group[N]/SoC-Lab-Gr
oup[N].runs/impl_1/design_1_wrapper.bit

Upload the generated design_1.hwh file and store it as design_1_wrapper.hwh.

You can find it under:

/home/isotdaq/SoC-Lab/Group[n]/SoC-Lab-Group[N]/SoC-Lab-Gr
oup[N].gen/sources_1/bd/design_1/hw_handoff/design_1.hwh

5. Now open the template Jupyter notebook (the file with the extension .ipynb) and have a

look at the pre-prepared code. Follow the instructions within the file to test the basic

functionality of your SoC.

In order to control the PulseThreshold block and the MultiChannelAnalyzer, as well as to read out

the data from the MultiChannelAnalyzer you can refer to the following register map.

Block Register Offset Comment

PulseThreshold THR_START 0 If the signal rises above this threshold, a pulse is
detected. Possible values: 0 - 65535

THR_STOP 4 If the signal falls below this threshold, the end of
a pulse is detected. Possible values: 0 - 65535

MultiChannelAnalyzer
Control

RESET 0 Writing 1 to this register clears all the MCA data.

ENABLE 4 Writing 1 to this register enables the operation
of the MCA. Writing 0 to this register pauses the
MCA operation.

MultiChannelAnalyzer
Data

0 - 8188 The 2048 histogram bins. Bin N corresponds to
register offset N*4.

Ask your tutor if you are stuck, or if you need help with Python.

3.3.2 Additional software features

Here are two more challenges to be implemented in software, depending on the available time.

Pick one to start and discuss between yourselves how to implement this.

You can ask your tutor for advice at any point in time.

128

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

Medium: Identification of the spectrum components

The spectrum recorded by your system contains a total of 6 peaks. The two middle peaks

correspond to the Kα and Kβ emission lines of Iron (Fe). Can you figure out what the other two

components of the recorded spectrum are?

A table with Kα and Kβ emission lines of most elements can be found under:

https://xdb.lbl.gov/Section1/Table_1-2.pdf

Hard: Identification of the noise floor

The pulse signals generated by the DoubleExpPulseGenerator are not ideal, but have a certain

amount of white noise added. Can you identify the amount of noise which is present? Or

formulated differently: what is the minimal threshold which should be set to not record any noise?

This is the end of the guided lab. Have fun playing around with the system and discuss

any question you have with your tutor. Thank you for your participation!

129

https://xdb.lbl.gov/Section1/Table_1-2.pdf

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

Appendices

A) Pulse Processing Pipeline

130

ISOTDAQ 2023 Lab 13: System on Chip (SoC) FPGA

B) Acknowledges

• Markus Joos (CERN) & other organizers of ISOTDAQ

• Ton Damen (NIKHEF)

• Peter Jansweijer (NIKHEF)

• The other members of the ISOTDAQ SoC FPGA Lab Team:

– Elena-Sorina Lupu (Caltech)

– Patryk Oleniuk (Hyperloop One)

– Andrea Borga (NIKHEF)

– Manoel Barros Marin (CERN)

131

ISOTDAQ 2023 Lab 14: Introduction to GPU

Lab 14: Introduction to GPU programming

V.1.0 - Gianluca Lamanna (gianluca.lamanna@cern.ch)

Overview

This lab aims at introducing the main concepts of GPU programming. After simple exercises to

become familiar with the video card and software environment, we will study the influence of the

GPU (Graphics Processing Units) architecture on code optimization. The students are invited to use

the pieces of code provided in this lab book as a source of inspiration and to write is own code.

Introduction

Historically most of the code, written for standard processors, runs sequentially. To speed-up the

software execution most of the developers relied on the continuous increase in hardware system

performances with small or null code optimizations. In the last years, the processors' speed is gone

towards a kind of saturation due to integration limits and power constraints. Parallel processors,

such GPUs, have shown to overcome the limits of single-core processors, thanks to a different

architecture. The GPUs are designed to have many-threads running in parallel with the purpose to

increase the computing throughput for parallelizable problems. In contrast, the CPUs (Central

Processing Units) are designed with a multi-core architecture, in which each core is optimized to

maximize the execution speed of

sequential programs. Nowadays

commercial GPUs are designed to

have an order of 10 TFlops

(Floating point operations per

second) computing throughput

while first class multi-core CPUs

rarely exceed 1 TFlops.

One could ask why there is such a

large difference in performance between many-threads GPUs and general-purpose multi-core

CPUs. As shown in figure 1 the main reason is due to the very different structure between the two

types of processors. In CPU most of the “transistors” are devoted to control logic and large cache

to reduce instructions and data access latencies, while in GPU most of the space is used for real

computing. Another important reason is the difference in memory bandwidth since several

applications are limited by the rate at which the data are delivered to the processor for computing:

in the GPU the memory bandwidth is at least x5 higher than in CPU. This is due to the fact that in

standard CPU the memory management is conditioned by legacy operating systems, applications

and I/O, while in GPU only data movement from memory to computing units occurs.

From a software point of view, to exploit the power for these GPUs the application is expected to

be written with a large number of parallel threads. The hardware takes advantage of the large

number of threads to find work to do when some of them are waiting for long-latency memory

132

ISOTDAQ 2023 Lab 14: Introduction to GPU

accesses or arithmetic operations (throughput oriented). On the other hand, the CPUs are designed

to minimize the execution latency of a single thread (latency-oriented). For programs that need one or

very few threads, CPUs with lower operation latencies can achieve much higher performance than

GPUs. When a program has a large number of threads, GPUs with higher execution throughput can

achieve much higher performance than CPUs. It should be clear now that GPUs are designed as

parallel, throughput-oriented computing engines and they will not perform well on some tasks on

which CPUs are designed to perform well.

A heterogeneous computing model, in which both serial and parallel processors are used at the

same time, is able to speed-up several computational problems. This kind of philosophy is used, for

instance in the CUDA model on NVIDIA video cards. Until 2006, graphics chips were very difficult to

use because programmers had to use the equivalent of graphics API (Application Programming

Interface) functions to access the processing units. Starting from 2007 CUDA has been introduced

to allow developers to direct access to computing resources, in an environment integrated with

standard programming languages.

The CUDA model is not the only way to exploit GPU power for computing. Nowadays several other

possibilities are present on the market. OpenCL is a low-level API, equivalent to CUDA but suitable

for several types processors (including FPGAs) and GPU vendors. Directives-based programming

model (such as OpenACC) and GPU libraries (such as Thrust) allow to invoke GPU computing during

serial code execution, to parallelize specific task, in a user transparent way. For educational

reasons, in this lab, we will concentrate on CUDA, as it allows to better understand the GPU

programming philosophy and the interplay with the hardware architecture.

Exercise 1: Discover the GPU performances

The CUDA developer SDK provides examples with source code and utilities to get started writing

software with CUDA. In the CUDA samples directory, you can find several programs ranging from

basic to advanced level. In particular, in the directory “1_Utilities” two simple applications

are ready to be compiled (using make for the moment): deviceQuery and bandwidthTest.

Both of them provide information about the system, type, and characteristics of GPU (if correctly

recognized).

Try to run them and write down the features that seem most important to you.

Exercise 2: Parallel “Hello World!”

The code to program the GPU is substantially subdivided into two parts: HOST and DEVICE. The

HOST part is executed in the PC while the DEVICE part (called KERNEL) runs on GPU. In the HOST

part, together with the serial part of the program, a GPU related part must be present, such as

data preparation and instructions to copy data on device (the GPU). Let's try to write a "Hello

World!" program (see Snippet 1)

133

ISOTDAQ 2023 Lab 14: Introduction to GPU

In this simple program, there are two key points of GPU programming: kernel definition and kernel

launch. The kernel is essentially a C function defined through a qualifier. The qualifier

(__global__) tells the compiler that the function is callable from host to be executed on the

device. The syntax to launch the kernel in CUDA is: mykernel<<<DimGrid,
DimBlock>>>(arg), where mykernel is the name of the kernel defined above with,

eventually, the arguments of the function between the brackets (), while the variables DimGrid
and DimBlock define how to use the GPU resources at run time. We will discuss this point later,

for the moment we just note the kernels have access to two built-in variables (threadIdx,

blockIdx) that allow threads to distinguish among themselves. The CUDA SDK toolkit provides

tools for compilation and debugging. The C compiler is “nvcc”, very similar to cc/gcc in several

aspects. You can compile the "Hello world" code just with:

nvcc file_name.cu –o HelloWorld –arch=compute_50 –code=sm_50

Try to compile and run the code: Which is the output? Try to play a little bit with the parameters

in the kernel launch (1 and 5 in this example), what happens?

Exercise 3: Vector Add and GPU optimization

In order to illustrate the structure of parallel computing, we start with a somewhat more complex

example. Suppose you have two very big vectors (let’s say with 1048576 elements) to add up. The

task is quite simple since each element in the vector result is just the sum of the corresponding

elements in primary vectors:

c[i]=a[i]+b[i]

but must be repeated a huge number of times. This problem is particularly suitable for

parallelization: each element in the sum is independent of the other. As a starting point let’s try to

write a serial version of the code as suggested in snippet 2

134

ISOTDAQ 2023 Lab 14: Introduction to GPU

In this case, the vector sum is done in a standard C function (VecAddSerial). Some CUDA

function is added to measure the execution time with the same mechanism we will use in the GPU

version. For this reason, this code must be compiled with nvcc, even if it will run only on the host.

Let’s try to modify this code to exploit the GPU computing power for the vector sum. Before

starting we discuss a moment as the parallelism works in the GPU. After the kernel launch, the

CUDA runtime system generates a grid of threads organized in a two-level hierarchy. Each grid is

organized into an array of thread blocks, which will be referred to as blocks. All blocks of a grid are

of the same size; each block can contain up to 1,024 threads.

Go back to exercise 1 to discover the maximum dimensions of grid and blocks in the GPU we are

using.

135

ISOTDAQ 2023 Lab 14: Introduction to GPU

The total number of threads in

each thread block is specified by the host code when a kernel is launched. Each thread is identified

by the thread number within the block (threadIdx.x we saw in exercise 2) and the block

number within the grid (blockIdx.x). Another important aspect in preparing the GPU

modification of the serial code is that the user must provide the data to the GPU. This means that,

before the kernel launch, the data must be explicitly copied in the GPU. When the computation on

GPU ends, the results must be copied back from device to host by the user. This is done using the

PCI express bus, slower with respect to the processor memory direct connection. One can imagine

that the movement of data from host to device (and back) is one of the main contributions to the

total latency in heterogeneous application. This overhead in time execution can be eventually

“masked” with the gain in the computational part. Now, try to modify the serial code by using the

suggestions in snippet 3. The cudaMalloc function is used to allocate memory on the device,

while data from the host to the device are copied by using the function cudaMemcpy. After the

kernel launch, another cudaMemcpy will copy back the results.

Try to compile and run.

The result is not what we expected. Although we are using a GPU with 1 TFlops and our problem is

very parallelizable (and simple), the execution time is worse than the serial code version!

136

ISOTDAQ 2023 Lab 14: Introduction to GPU

Take a minute to have a close look at the code.

The reason for this failure is that we are using the GPU in a

very inefficient way. In fig. 2 the hierarchy of the threads

described above is shown. Roughly speaking each block is

executed in a multi-processor (this is not completely true),

that, in hardware, is a group of single CUDA cores. The

GTX750, we are using, has 512 computing cores grouped

in just 4 multi-processors. In the kernel launch in the

snippet above we define the structure of the parallelism

with VecAddGpu<<<N,1>>>, this means that we asked

for 1048576 blocks with one thread each. Since the

number of multi-processors is limited, only 4 threads are

executed concurrently in the GPU. In each block, one

thread is working while 127 threads are in idle, with a lot of blocks waiting for their turn to be

executed.

Then let’s try to change the point of view and rewrite the code (Snippet 4) to fully exploit the

threads.

In this case, we are using one single block and a huge number of threads.

Let’s try to compile and run.

Now the execution time is very very small. Try

to compute the speed-up factor with respect

to the serial code. As a rule of thumb a

well-written code can give a factor of 100, but

no more than that. But here it is even bigger.

This is quite suspicious! Try to print out the

result of the kernel execution (after the copy

on the host) to figure out what is happening.

Probably you can notice that there is

137

ISOTDAQ 2023 Lab 14: Introduction to GPU

something wrong. Another possibility to spot the error is to use the error managing system of

CUDA. Try to add:

cudaError_t KernelError=cudaGetLastError();
printf("Error %s\n",cudaGetErrorString(KernelError));

just after the kernel call.

What message do you get? Another possibility is to use CUDA debugger. It is very similar to the c

gdb debugger with additional support to investigate the behavior of single threads. Try with:

cuda-gdb <executable> (remind to compile with the flag –g).

As suggested by debugging tools we are running the GPU out of his resources. Try to have a look

(exercise 1) at the maximum number of threads per block allowed for the board we are using. The

winning strategy is to use both blocks and threads to exploit the maximum number of resources

available. In doing that we need to change two things (Snippet 5): first in the kernel call we have

explicitly configured the GPU architecture to have the correct number of blocks in the grid and the

correct number of threads for each block, second we have to change the kernel in order to be sure

that each of the N threads running operates on different vector elements (fig.3 is just a generic

example on how to define the index in the kernel).

Try to compile and run the code. How much is the execution time now?

Exercise 4: Memory management

In the previous exercise, we learned how to organize the GPU resources to use a huge number of

threads, concurrently. Although we saw how to optimize threads and blocks to get better

performances, this is not the end of history. The CUDA kernels that we have learned so far will

138

ISOTDAQ 2023 Lab 14: Introduction to GPU

likely achieve only a tiny fraction of the

potential speed of the underlying hardware.

The poor performance is due to the fact that

in GPU programming it is responsibility of the

user to organize data in the proper way inside

the memory. Let's try to understand better

this point with an example. In our previous

example for each operation (vector elements

sum), there are 2 accesses to the memory to

extract the sum addenda. Thus the ratio of

floating point calculation to memory access is

1:2. We refer to this ratio as compute-to-global-memory-access ratio, defined as the number of

floating-point calculations performed for each access to the memory. For our GTX 750 the memory

bandwidth is (exercise 1) 80 GB/s, this means that with 4 bytes for each single-precision floating

point operation one can expect to load 80/(2*4) =10 Giga single-precision operands per second.

Assuming a compute-to-global-memory-access of 0.5 the maximum number of operations per

seconds is 10 GFlops that is quite far from the nominal computing power of 1 TFlops of our GPU.

The programs in which execution speed is limited by the memory access throughput are called

memory bound programs. CUDA provides a number of additional resources and methods for

accessing memory that can remove the majority of traffic to the memory. We will briefly discuss

the use of CUDA memories and how to increase the timing performances, through a simple

example. In GPU there are several types of memories that can be accessed from different levels of

the parallelism hierarchy. In fig.4 you can see the structure of the two main memories: the global

and the shared memory. The global memory is accessible by each multi-processor and each thread

running in single cores of a multi-processor. It is physically implemented in DDR and is connected

through the PCI express bus to receive data coming from the host: when you perform a standard

cudaMemcpy operation you are copying data in this memory, that is, usually, quite big (2GB in GTX

750). On the other hand, the scope of the shared memory is limited to a single block. Only the

threads running in that block can use the same shared memory, that is implemented on the GPU

chip. The quantity of shared memory per block is very limited (49kB on GTX 750) but the speed is

very high (at a level of 1 TB/s). This structure of memories is exploited to increase the peak

performance in the GPU in several problems.

Let's try to understand better how to exploit the shared memory with a new example: the matrix

multiplication. Take a look at the snippet presented on the next page (Snippet 6). The structure is

similar to the one analyzed above, even if the code is organized in a different way. Try to

understand what the code is intended to do by yourself. In this version of the code data are

copied in the global memory from host and then each thread read the data directly from the global

memory. A simple improvement in memory managing is achieved by observing that the global

memory access is coalesced. This means that when all threads of a warp (a group of 32 threads in

139

ISOTDAQ 2023 Lab 14: Introduction to GPU

the same block) execute a load instruction, if all accessed locations fall into the same burst section,

only one DRAM request will be made and the access is fully coalesced, as described in fig.5.

140

ISOTDAQ 2023 Lab 14: Introduction to GPU

141

ISOTDAQ 2023 Lab 14: Introduction to GPU

To exploit the coalescence, the memory reading should be organized in a proper way. The next

level of improvement is to exploit the shared memory. The general idea is to subdivide the matrix

into sub-matrices and to assign each sub-matrix to a thread block. The data are copied once from

the global memory to the shared memory of the block and then re-used according to the needs of

the matrix multiplication algorithm. The shared memory is defined with the keyword

__shared__ followed by type and dimensions. Also the shared memory, similarly to the global

memory, is organized in banks (16 in older GPU, 32 in newer GPU) that can be accessed

simultaneously to achieve high memory access. In your working directory, you should have a file

MatrixMultiplication_shared.cu file, where the implementation with shared memory

is done.

Try to take a look to understand how it works and modify the code to try different solutions and

to measure the timing (adding the "events" statement properly).

Exercise 5: Fitting rings with GPU

In this last exercise, you can use the code in the directory "rings" in your working directory. This

is a simple example of possible use of GPU for

pattern recognition. The so-called Crowford

algorithm is used to search for center and

radius of a limited number of hits on a circle

in, for instance, a Cherenkov Ring counter. You

are invited to try to optimize the code in

order to increase the speed of the total

process. A good way to understand what is

happening is to use the profiler provided in

the CUDA toolkit. You can invoke it just with

nvprof and the name of the executable for the textual version and nvvp and the name of the

executables for the GUI version (fig. 6).

142

ISOTDAQ 2023 Lab 14: Introduction to GPU

GLOSSARY

GPGPU (General Purpose computing on Graphics Processing Units): is the idea to use GPU for

standard computing usually performed on CPU, by exploiting the intrinsic parallelism of graphics

processors.

Threads: A thread is a simplified view of how a processor executes a sequential program in

modern computers. A thread consists of the code of the program and the values of its variables

and data structures. A CUDA program initiates parallel execution by launching kernel functions,

which causes the underlying runtime mechanisms to create many threads that process different

parts of the data in parallel.

Blocks: Groups of threads.

CUDA core: the smallest arithmetic computing unit in a GPU (a.k.a. single core).

Multi-processors: a group of single cores.

Built-in Variables: Many programming languages have built-in variables. These variables have a

special meaning and purpose. The values of these variables are often pre-initialized by the runtime

system and can be referenced in the program.

Memory Space: Memory space is a simplified view of how a processor accesses its memory space

is usually associated with each running application. The data to be processed by an application and

instructions executed for the application are stored in locations in its memory space. Each location

typically can accommodate a byte and has an address. Variables that require multiple bytes – 4

bytes for float and 8 bytes for double are stored in consecutive byte locations. The processor gives

the starting address (address of the starting byte location) and the number of bytes needed when

accessing a data value from the memory space.

SIMD (Single Instruction Multiple Data): It is a computing model in a parallel architecture. It

described processing units where the same instructions are executed simultaneously on a different

set of data.

SIMT (Single Instruction Multiple Threads): The computing item is the thread that is implemented

as a sequence of SIMD operation

143

