ISOTDAQ 2023 Introduction to Trigger Gökhan ÜNEL / UCI ### the big picture trigger and data acquisition physics results ### Nomenclature #### Detector - → Device to capture events - ⇒ Event: something interesting like a p-p collision #### Triggering - → Quick reaction to the event in question, - → "low latency" & "high efficiency" - → Quick execution of tasks following the occurence - → "low deadtime" - → Allow for errors - ⇒ "redundant" - → Allow for quick modification while running - → "flexible" - → Dont spend all the money on TRG - ⇒ "affordable" #### Data acquisition → Record the data from the events # Triggering (TRG) - * Fast and reduced information! - * did it pass? - * did it happen? - * is it bigger than x? - * How? - * mostly using dedicated equipment (HW trigger) - * sometimes with additional help with dedicated software (SW trigger) #### * What? - * if ... then, ... - * If a particle passe, go and read the modules. #### * Trigger types - * Repetitive: write data every N seconds - * Random: write data at random to check - * Self: delay signals & decide to write or not - * ... ### Modern Particle Physics Experiments #### * Data Size - * few MB/event - * summing of few 100 M channels #### * Data Rate - * About 40 M evts /s at 13 TeV (LHC) - * About 1 evts /100 years /km at EeV (PAO) #### * Bandwith - * 40MHz x 1 MB = 40TB/s - * too much data! can not write them all. - * select and record only the most important events | minute from the first title | the last the last to be a second to be a | TO SEE PART OF SEC. SEC. SEC. S. | |-----------------------------|--|----------------------------------| | exa | E | 10 ¹⁸ | | peta | Р | 10 ¹⁵ | | tera | Т | 10 ¹² | | giga | G | 10 ⁹ | | mega | М | 10 ⁶ | | kilo | k | 10 ³ | | mega | | | ### TRIGGER - * select and record only the most interesting events - * decide as fast as possible, in real-time - * keep promising candidates, remove clutter - * But pay attention to - * do not introduce any bias - * good sensitivity (do not miss) - * good synchonization (recorded and triggered events should match) - * good rejection (dont accept by mistake) - * do some monitoring (keep an eye on the system) ### some concepts #### * Fixed target experiment * spill, flat top, extraction, break #### * Collider experiment - * Bunch Crossing (BC) - * compromise between high bg rejection and efficient selection - * reject bg events to match the DAQ capacity (LHC: GHz to ~ 100 Hz) - * should understand the background completely to reject correctly - * different event types: Pile-up, Minimum Bias, physics, QCD... # fixed target point of view Fig. 1. Setup of the Na59 Experiment - * S: a device that gives T/F information - * will setup logic statements to - * classify and count event types - * N1= s1 & s2 & !s3 ---> an electron is coming and it is not away from the central axis - * N2= N1.(T1 || T2) ---> the above electron was diverted in B8 magnet ### triggering by a scintillator $y = \alpha \cdot \Delta t + \beta = \alpha \cdot (t_{top} - t_{bottom}) + \beta$ - DWC: Delay Wire Chamber - → Simple detector to typically measure the beam profile on fixed target experiments. - ⇒gaseous & multiwire - → TDC readout: 2CH /plane. # collider point of view - * pp / ee collisions yield events according to cross sections - * Interesting events have very SMALL cross sections: few events - * Find the needle in a Large Haystack Collection - * Typically 1 in 1010 or smaller odds. - * depends on signal and backgroung cross sections - * Number of events, $N = \sigma$ (cross section) x L (luminosity) x ϵ (efficiencies) - * L = how long we run the accelerator - * ε has many components... ### Efficiencies - * Egeom - * Is the event inside the detector volume? - * any cracks/ un-instrumented areas? - * Edetector - * Is the relevant sensor working correctly? - * Is the readout electronics working correctly? - * Etrigger - * was I supposed to quickly notice the event? did I? $$\epsilon = \frac{success}{try}$$ ### Trigger Rates - Vead Time - * Instantaneous Luminosity - * L = #interactions/cm²/s - $*N = \sigma L$ - * both are estimations * High efficiency needed $$\epsilon_{TRG} = \frac{\#Accepted}{\#Produced}$$ - * TRG decision takes time - * it contributes to toal DeadTime: use buffers ### TRG objects and efficiencies - * We usually trigger on high energy (or pT) objects - * e, γ , μ , jets, MET, Σ_{ET} - * or their combinations - * Trigger efficiency calculation options: - ~ MC simulations: This many events should have been triggered (try), How many actually were? (success) - ~ Compare with another looser trigger, do offline analysis - ~ Use data: tag and probe method - * requires clean sample, known physics and fake information - * I triggered on this many muons (success), offline analysis tells me they come from Z-bosons which decay into muon pairs, therefore I should have had this many triggers (try). # Busy - * after TRG comes readout - * reading out electronics, buffers takes time. - * what if another TRG comes while data is read? - * this is bad, should be prevented. - * Flag that system as "busy" before readout - * this will block futher triggering => "back pressure" - * do the reading and clear the flag => "busy logic" - * for simple systems achieved via standard HW (NIM) modules - * for not so simple systems, develop your own hardware (FPGA, ASIC...) - * In real life, data (events) come at random & data rate fluctuates - * use buffers to absorb deadtime and to minimize busy duration ### TRG tasks - * Accept interesting events - * what did happen? what did not happen? - * Reject uninteresting events (as early as possible) - * Especially for colliders - * Ensure sensitivity to a parameter - * tunable system to compensate if Nature misbehaves - * Ensure good synchronization - * multiple sub detectors will be sending data ### acceptance vs rejection - * Accept good events - * but there are some good ones that looked bad in that particular "photo" - * Reject bad events - * but there are some bad ones that looked good in that particular "photo" ### Backgrounds can be reduced, but not suppressed. Particular needs of the experiment determine the optimal point. Rely on trigger algorithms - logic operations - conditional statement 16 # TRG types - * Zero-bias: just the BC event - * Minimum-bias: BC && minimum detector activity - * Physics: desired events, Instrumental and physics backgrounds - * Calibration: Detector and trigger efficiency measurement from data, calibration coefficients, energy scales - * Back-up: to spot problems, provide control samples (often pre-scaled) - Pre-scaled: mostly known event types, backgrounds ### prescaling Only a fraction N of the events satisfying the relevant criteria is recorded, where N is a parameter called prescale factor. This is useful for collecting samples of high-rate triggers without swamping the DAQ system ### Turn On Curves - * A TRG has to be fast and mostly in accurate due to large measurement error - * A TRG becomes efficient when the desired events are accepted. - * L1 threshold is chosen so that efficiency is 95% of its max value (MC) # "high" level trigger - * First-level selection must be fast: hardware based - * Fast custom electronics making simple and fast selection - * Coarse granularity data from detectors, mostly aimed at lepton identification - * Hadron and e-m calorimeters for electrons/γ/jets - * Muon chambers - * Usually does not need to access data from the inner-tracking detectors (only if the rate can allow it) - * HLT must be selective: software based (PC farms) - * Can be separated into levels - * Level-2 accessing only a part of the event - * Level-3 accessing the full event - * Full-precision and full-granularity calorimeter information - * High-precision readout from the muon detectors - * Fast tracking in the inner detectors (for example to distinguish e/γ) | | No.Lev
Trigger | First Level
Rate (Hz) | Event
Size (Byte) | Readout
Bandw.(GB/s) | Filter Out
MB/s (Event/s) | |-------|-------------------|---------------------------------------|----------------------|-------------------------|------------------------------| | ATLAS | 3 | 10 ⁵
L2 10 ³ | 106 | 10 | ~100 (10²) | | CMS | 2 | 105 | 106 | 100 | ~100 (10²) | # TRG Levels & signatures - * LHC triggers are implemented in multiple levels - * high efficiency with large background rejection - * ATLAS has 3 levels - * L1 = fast (few µs) with limited information, hardware based - * L2 = moderately fast (~10s to ms), hardware/software - * L3 = Commercial processor(s) | Ехр. | No of Levels | |-------|--------------| | ATLAS | 3 | | CMS | 2 | | LHCb | 3 | | ALICE | 4 | - * Signature: a parameter used for event discrimination - * the amplitude of a signal passing a given threshold OR a complex quantity given by software calculation - * First use intuitive criteria: fast and reliable - * combine more signatures together following a certain trigger logic, giving redundancy. # HLT design ideas #### * Early rejection * Alternate steps of feature extraction with hypothesis testing: events can be rejected at any step with a complex algorithm scheduling #### * Event-level parallelism - * Process more events in parallel, with multiple processors - * Multi-processing or multi-threading - * Queuing of the shared memory buffer within processors - * Algorithms are developed and optimized offline, often software is common between online | Thread | Process | | |---|--------------------------------------|--| | Share memory space | Separate Memory
Space | | | Lightweight | Needs more memory | | | Memory should be carefully managed | no special attention neded | | | OS usually needs little help to correctly distribute across multiple CPUs | OS handles the MultiCPU distribution | | # a multi level example - * e, γ, τ, jets, MET, ΣΕΤ - * Various combinations of cluster sums and isolation criteria #### * Level-1 - * Dedicated processors apply the algorithms, using programmable ET thresholds - * Peak finder for BC identification - * Sliding-window technique to find clusters #### * High-Level trigger - * More topological variables and tracking information for electrons from Inner Detectors - * Tower clustering at L2 - * Jet algorithms at L3 (Event Filter) - * Isolation criteria can be imposed to control the rate (reducing jet background at low energies thresholds) ### seeded HLT: ATLAS - * Level-2 uses the information seeded by level-1 trigger - * Only the data coming from the region indicated by the level-1 is processed, called Region-of-Interest (Rol) - * The resulting total amount of Rol data is minimal: a few % of the Level-1 throughput - * Level-2 can use the full granularity information of only a part of the detector - * No need of large bandwidth - * Complicate mechanism to serve the data selectively to the L2 processing Typically, there are less than 2 Rols per event accepted by LVL1 ### networked HLT: CMS - Data from the readout system (RU) are transferred to the filters (FU) through a builder network - * Each filter unit processes only a fraction of the events - Event-building is factorized into a number of slices, each one processing only 1/nth of the events - Large total bandwidth still required - * No big central network switch - * Scalable ### a TRG menu 70 gr. 12.00 TL 100 gr. 17.00 TL 120 gr. 21.00 TL 150 gr. 24.50 TL * Our recording power is limited like our stomach. Can't eat all, we must choose. 70 gr. 12.00 TL 100 gr. 17.00 TL 120 gr. 21.00 TL 150 gr. 24.50 TL - * Needed especially for collider detectors - * A trigger menu is the list of our selection criteria - * Each item on the menu is a trigger path = instructions for each trigger level (L1+L2+L3..) - * An event is stored if one or more trigger chain criteria are met - * Prescales and menu to be adjusted during run - * Inclusive: Allow good candidates + anything else - * collect the signal samples (mostly un-prescaled) - * Redundant: Issues in a single one detector or in a trigger input do not affect physics (reduced efficiency but still the measurement is possible) 70 gr. 12.00 TL 100 gr. 17.00 TL 120 gr. 21.00 TL 150 gr. 24.50 TL | Object | L1 (Hz) | L2 (Hz) | EF (Hz) | |------------------|---------|---------|---------| | Single-electrons | 5580 | 176 | 27.3 | | Multi-electrons | 6490 | 41.1 | 6.9 | | Multi-photons | common | 2.9 | < 0.1 | | Single-photons | common | 33.4 | 9.1 | | Multi-Jets | 221 | 7.9 | 7.9 | | Single-Jets | 24.4 | 24.4 | 24.4 | | Multi-Fjets | 2.7 | 2.7 | 2.7 | | Single-Fjets | 3.7 | 3.7 | 3.7 | | Multi-bjets | common | 12.9 | 2.6 | | Single-bjets | common | 11.6 | 11.6 | | Multi-taus | 465 | 14.5 | 12.4 | | Single-taus | 148 | 32.9 | 22.3 | | Multi-muons | 68.6 | 5.8 | 2.3 | | Single-muons | 1730 | 204 | 21.8 | | Missing E_T | 37.9 | 31. | 3.8 | | Total E_T | 6.3 | 6.3 | 1 | | Total Jet E_T | 1.6 | 1.6 | 1.6 | | BPhysics | common | 25 | 13 | | Muti-Object | 5890 | 134 | 48 | | Minimum Bias | 1000 | 10 | 10 | | Total | 12000 | 620 | 197 | | | | | | #### In summary: let your TRG be: - → "low latency" - → "high efficiency" - → "low deadtime" - → "redundant" - → "flexible" - → "affordable" # happy TRGing More in DAQ hardware detector readout lectures