
An Introduction to
Neural Networks

Satchit Chatterji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

Why you should consider
Neural Networks

Satchit Chatterji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

Why I don’t need to convince
you to use Neural Networks

Satchit Chatterji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

Why I don’t need to convince
you to use Neural Networks

Satchit Chatterji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

The short answer

- They’re useful!

The short answer

- They’re useful!
- They’re fast!

The short answer

- They’re useful!
- They’re fast!
- They’re (now) easy to implement!

The short answer

- They’re useful!
- They’re fast!
- They’re (now) easy to implement!
- They’re cute!

https://twitter.com/gdb/status/15125219

12064229377

The short answer

- They’re useful!
- They’re fast!
- They’re (now) easy to implement!
- They’re cute!
- They’re definitely not going to take over the world!

OpenAI

https://twitter.com/gdb/status/15125219

12064229377

The short answer

- They’re useful!
- They’re fast!
- They’re (now) easy to implement!
- They’re cute!
- They’re definitely not going to take over the world!

https://twitter.com/gdb/status/15125219

12064229377

The long answer
It’s a bit more complicated than that…

OpenAI

Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next

Along with:
- A demo in a simulated environment
- A few tips on building and training your own networks

Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next

Along with:
- A demo in a simulated environment
- A few tips on building and training your own networks

Given: Input-output examples of the form:

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

Assumption: Data is generated by a “true ” function, with some added noise:

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

Assumption: Data is generated by a “true ” function, with some added noise:

Goal: Learn an approximation of the generator function to use on new data:

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

Assumption: Data is generated by a “true ” function, with some added noise:

Goal: Learn an approximation of the generator function to use on new data:

Loss function: A distance between and such that we can say is
“good” if L is low across many given instances of S.

Introduction to Supervised Machine Learning

Aim: Learn a function with low “risk”

Risk: What we want to minimize

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Aim: Learn a function with low “risk”

Risk: What we want to minimize

Empirical Risk: What we can actually calculate
(for a “candidate” model h, averaged over N training

examples)

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Common Approaches

- Linear/Polynomial/Logistic Regression
- (Boosted) Decision trees
- Support Vector Machines
- Naive Bayes
- Neural Networks!
- …

Images of regressions, decision tree, and SVM from scikit-
learn.org

Artificial vs Biological NNs

ANNs initially inspired by the brain:
Alexander Bain (1873), William James (1890)

Electrical connections/flow of neurons result in thought
and movement

McColloch & Pitts (1943)
Modern mathematical “artificial” NN models (not the only neural

network model!)
Rosenblatt (1958)

Description of the perceptron
Rumelhart, Hinton & Williams (1986)

Multi-layer perceptrons and error backpropagation (learning principle)

Modern:
- ANNs used everywhere for everything!
- Simplified, abstracted version of “synaptically”-connected “neurons”
- Biologically implausible

Source: linkedin.com/company/deeplearningai

Building a Neural Network
From Scratch (mathematically)

Classes are “linearly separable”

The “Perceptron”

- The modern notion of a single “neuron”
- BUT: Only works on linearly separable classes

Generalized “activation
function”

…

Multi-layer Perceptrons (MLPs)

“Weight vector” “Feature vector”

“Bias”

“Activation function”

“Activation
”

Activation/
output

of neuron k

K "hidden” neurons
in layer L

Most common way of writing out the
activation of a layer of an MLP

The output of each layer is the product of its weight matrix and the input
vector plus its bias vector, all wrapped in a non-linear activation function.

⇒
Inputs

⇒
Outputs

A multi-layer perceptron is a series of
affine transformations of an input

vector, each of which is wrapped in a
non-linear activation function.

(Translation: an MLP is a fancy function)

A Note on Nonlinearity

Without a non-linear activation function, a series of linear transformations would
result in just a linear transformation of the input to the output.

We would still be stuck in the land of linear separability!

Loss functions

Depends on the task!

Mean Squared Error
Used for e.g. regression tasks

Cross Entropy
Used for e.g. classification tasks

Define your own!
Note: Must be differentiable for gradient descent based methods

Common nonlinear functions

Implementing learning: Gradient Descent

Given:
- Family of parameters (e.g. possible weights of a NN)
- Differentiable risk function

Goal:

Backprop: Gradient descent

“Guess”

“Learning rate”

Converges to local minima

Backprop: Efficient NN GD

- Goal: change to
- Recall a NN:

- Use the chain rule to compute the derivatives from output to input
“Backpropagation of errors”

A “real” loss landscape:
- Many (many many) local

minima
- Saddle points

http://www.telesens.co/2019/01/16/neural-network-loss-visualization/

Optimizers

Stochastic/Mini-batch GD: Speed improvement!
Perform backprop on errors of batches of training samples instead of all at

once
- Reduces the number of expensive backward passes

Optimizers determine exactly how backpropagation is implemented
- Stochastic Gradient Descent (most common)
- Adam
- RMSProp

Optimizers

Stochastic/Mini-batch GD: Speed improvement!
Perform backprop on errors of batches of training samples instead of all at

once
- Reduces the number of expensive backward passes

Optimizers determine exactly how backpropagation is implemented
- Stochastic Gradient Descent (most common)
- Adam
- RMSProp

ML Training paradigms (a selection)

- Supervised
- Train a model with explicit input-output pairs

- Unsupervised
- Learns “patterns” from unlabelled data

- Semi-supervised learning
- Learn a few things with input-output pairs, relate them to patterns learnt

unsupervised
- Reinforcement Learning

- Learn an optimal “policy” that gives you the best action to take at any given state
space by taking random actions and learning through positive or negative
reinforcement.

- Evolution
- Optimize parameters through (Darwinian) evolution; e.g. genetic algorithms.

Types of Neural Networks

Multi-layer Perceptrons

Useful for static input-output
relations

More hidden layers ~ better
approximation of more
complicated functions

Quick to design and implement

Convolutional Neural Networks

Learn “kernels”, i.e. matrices that convolve over n-
dimensional data to extract abstract, lower-
dimensional features.

Used often in image and signal processing tasks
such as object detection and segmentation.

Accounts for translational variance: the object
can be anywhere in the image and still be found

LeNet’s architecture: One of the first CNNs
https://doi.org/10.1162/neco.1989.1.4.541

Recurrent Neural Networks

Outputs go back and forth between neurons (loops exist
in the graphs)

Approximates dynamical systems
- Any time-based function
- Any data that can be modelled as being

“ordered”

Used often in time-series tasks like signal processing,
natural language processing

Several types: Fully-connected, LSTMs, GRUs, reservoirs

An LSTM cell schematic. Adapted from:

doi.org/10.4233/uuid:dc73e1ff-0496-459a-

986f-de37f7f250c9

Echo state network schematic. Adapted from
www.scholarpedia.org/article/Echo_state_networ
k

Graph Neural Networks

Models any system that can be modelled as a graph

Learns relations between nodes,
edges, global properties

Used in e.g. image segmentation,
chemistry and pharmacy models,
NLP, hierarchically-related data Image adapted from this excellent intro to GNNs: https://distill.pub/2021/gnn-

intro/

What NNs can and can’t do

Universal Approximation Theorem

⇒We can approximate any function we want with a one-layer MLP!
More effective with more layers than just one (“deeper” networks)

Easier said than done in practice

Collection of proofs:
https://ai.stackexchange.com/questions/13317/where-can-i-find-
the-proof-of-the-universal-approximation-theorem

Schematic borrowed from Jaeger, H. (2022) Neural Networks Lecture
Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Where NNs thrive
> Statistical/correlation inference needed

> There exists a lot of good quality (labelled) training data

> Parallelizable training and deployment

> Tasks without expansion (input-output fixed)

> Specialized tasks

> Good in-range performance IRL https://lasp.colorado.edu/home/minxss/2016/
07/12/minimum-mission-success-criteria-met/

Limits of NNs
> No causal relations possible (yet)

> Very data hungry - “Garbage in, garbage out”

> Often expensive to train

> Nonextensible and specialized to a range and task
- Add one more neuron → retrain the entire network
- Undefined behaviour on out-of-domain test

examples NO MOAR DATA.

https://knowyourmeme.com/memes

/grumpy-cat

NO.

In practice

Frameworks

You don’t need any maths or programming skills (but hopefully you do!)

Use other people’s code! libraries, frameworks, modules

Image of logos adapted from S. Summers, ISOTDAQ
Lecture on Machine Learning (2020) – Slide 8

A demonstration in Keras

Adapted from:
Erdmann, M., Glombitza, J.,
Kasieczka, G., & Klemradt, U.
(2021).
Deep Learning for Physics Research.

Training tips

Overfitting & Underfitting

The real troublemakers in ML in general!

Underfitting: When the model fits the training data not well enough
- Empirical risk is high, actual risk is high
- Training loss is high, testing loss is not optimal

Overfitting: When the model fits the training data too closely (incl. noise)
- Empirical risk is low, actual risk is high
- Training loss is low, testing loss is not optimal
- e.g. An D-degree polynomial can fit D-1 training points with zero error

Overfitting & Underfitting

Image source: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

More complex models (e.g. more layers, neurons per layer) -> higher likelihood of overfitting

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set

Train Set Test Set (unseen)

Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set
- e.g. 80-20 split (Note: split ratio depends on the model, task and data)

Train Set Test Set (unseen)

Validation

Validation Set

80% 20%

k-fold Cross-validation

Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Train Set Train Set Train Set Train Set Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Validation Set Train Set Train Set Train Set Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Train Set Validation Set Train Set Train Set Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Train Set Train Set Validation Set Train Set Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Train Set Train Set Train Set Validation Set Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

Result = average over all validation passes

k-fold Cross-validation

Train Set Train Set Train Set Train Set Validation Set

Training curves

Important to plot!

Training curves

Important to plot!(!!!!)

Training curves

Important to plot!(!!!!)

Shows if and how fast your model is learning on task-relevant metrics
- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

Training curves

Important to plot!(!!!!)

Shows if and how fast your model is learning on task-relevant metrics
- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

May indicate potential over and underfitting

Reading training curves

If

validation loss > training loss

then often the model is good!
Low loss ==

Better

Reading training curves

If

validation loss >> training loss

then often the model is overfitting
Low loss ==

Better

Reading training curves

If

validation loss ~ training loss

then often the model is underfitting
Low loss ==

Better

Reading training curves

If

validation loss < training loss

then something is very wrong, or totally expected!
Low loss ==

Better

Regularization

● L1/L2 Regularization
Added losses:

● Dropout (on when training, off when testing/deploying)
● Early stopping

Parallelization:
Speeding up NNs

Main math operation in NNs:
- Matrix-vector multiplications
- Element-wise nonlinear activation functions

Parallelization can be used to massively speed up learning and deployment!
- Multi-core CPUs
- Graphics processing units (GPUs)
- Tensor processing units (TPUs)
- FPGAs

Image from https://cloud.google.com/blog/products/ai-
machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu

UQ 1: Bias-Variance Decomposition

UQ2: Calibration

UQ2: Calibration

UQ3:

Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B.,

... & Davis, R. W. (1999). Functional characterization of the S. cerevisiae genome by

gene deletion and parallel analysis. science, 285(5429), 901-906.

UQ Others

● Markov-chain Monte Carlo (and variations: HMC, Langevin Dynamics, etc)
● Neural linear models
● Deep Ensembles
● Variational Inference
● Monte Carlo Dropout
● …

UQ Others

● Markov-chain Monte Carlo (and variations: HMC, Langevin Dynamics, etc)
● Neural linear models
● Deep Ensembles
● Variational Inference
● Monte Carlo Dropout
● …
● …
● …
● …

Frontiers

Deep learning
- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable AI (XAI)
- Explainable+interpretable models
- Human-like and human-understandable reasoning

Reservoir computing
- Echo state networks
- Conceptors

Others: Physics Informed NNs
Neural ODEs, PDEs

Group equivariant DL

	Slide 1: An Introduction to Neural Networks
	Slide 2: Why you should consider Neural Networks
	Slide 3: Why I don’t need to convince you to use Neural Networks
	Slide 4: Why I don’t need to convince you to use Neural Networks
	Slide 5: The short answer
	Slide 6: The short answer
	Slide 7: The short answer
	Slide 8: The short answer
	Slide 9: The short answer
	Slide 10: The short answer
	Slide 11: Introduction to the introduction
	Slide 12: Introduction to the introduction
	Slide 13: Introduction to Supervised Machine Learning
	Slide 14: Introduction to Supervised Machine Learning
	Slide 15: Introduction to Supervised Machine Learning
	Slide 16: Introduction to Supervised Machine Learning
	Slide 17: Introduction to Supervised Machine Learning
	Slide 18: Aim: Learn a function with low “risk”
	Slide 19: Aim: Learn a function with low “risk”
	Slide 20: Common Approaches
	Slide 21: Artificial vs Biological NNs
	Slide 22: Building a Neural Network From Scratch (mathematically)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: The “Perceptron”
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Multi-layer Perceptrons (MLPs)
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50:
	Slide 51:
	Slide 52:
	Slide 53:
	Slide 54:
	Slide 55:
	Slide 56
	Slide 57:
	Slide 58: A Note on Nonlinearity
	Slide 59: Loss functions
	Slide 60: Common nonlinear functions
	Slide 61: Implementing learning: Gradient Descent
	Slide 62: Backprop: Gradient descent
	Slide 63:
	Slide 64:
	Slide 65:
	Slide 66:
	Slide 67: Backprop: Efficient NN GD
	Slide 68:
	Slide 69: Optimizers
	Slide 70: Optimizers
	Slide 71: ML Training paradigms (a selection)
	Slide 72: Types of Neural Networks
	Slide 73: Multi-layer Perceptrons
	Slide 74: Convolutional Neural Networks
	Slide 75: Recurrent Neural Networks
	Slide 76: Graph Neural Networks
	Slide 77: What NNs can and can’t do
	Slide 78: Universal Approximation Theorem
	Slide 79: Where NNs thrive
	Slide 80: Limits of NNs
	Slide 81: In practice
	Slide 82: Frameworks
	Slide 83: A demonstration in Keras
	Slide 84: Training tips
	Slide 85: Overfitting & Underfitting
	Slide 86: Overfitting & Underfitting
	Slide 87: Validation
	Slide 88: Validation
	Slide 89: k-fold Cross-validation
	Slide 90: k-fold Cross-validation
	Slide 91: k-fold Cross-validation
	Slide 92: k-fold Cross-validation
	Slide 93: k-fold Cross-validation
	Slide 94: k-fold Cross-validation
	Slide 95: k-fold Cross-validation
	Slide 96: Training curves
	Slide 97: Training curves
	Slide 98: Training curves
	Slide 99: Training curves
	Slide 100: Reading training curves
	Slide 101: Reading training curves
	Slide 102: Reading training curves
	Slide 103: Reading training curves
	Slide 104: Regularization
	Slide 105: Parallelization: Speeding up NNs
	Slide 106: UQ 1: Bias-Variance Decomposition
	Slide 107: UQ2: Calibration
	Slide 108: UQ2: Calibration
	Slide 109: UQ3:
	Slide 110: UQ Others
	Slide 111: UQ Others
	Slide 112: Frontiers

