An Introduction to
Neural Networks

Satchit Chatteriji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

Why you should consider
Neural Networks

Satchit Chatteriji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

Why | don't need to convince
you to use Neural Networks

Satchit Chatteriji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

Why | don't need to convince
you to use Neural Networks

Satchit Chatterii
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

The short answer

- They'’re useful!

The short answer

- They'’re useful!
- They're fast!

The short answer

- They'’re useful!
- They're fast!
- They're (how) easy to implement!

The short answer

- They're useful!
- They're fast!
_) : |

They re (nOW) easy tO Implement' https://twitter.com/gdb/status/15125219
- They’re cute! 12064229377

The short answer

- They'’re useful!

- They're fast!
_) H |

They re (nOW) easy tO Implement‘ https://twitter.com/gdb/status/15125219
_ They)re Cutel 12064229377

- They're definitely not going to take over the world!

OpenAl

The short answer

- They'’re useful!

- They're fast!

- They're (how) easy to implement!

- They're cute!

- They're definitely not going to take over the world!

https://twitter.com/gdb/status/15125219
12064229377

The long answer

It’s a bit more complicated than that...

OpenAl

Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next
Along with:
- A demo in a simulated environment
- A few tips on building and training your own networks

Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next
Along with:
- A demo in a simulated environment
- A few tips on building and training your own networks

CAUTION

CONTAINS
MATH

MATURE READERS ONLY

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

S = (Xi:yi)izl,...,T X; € R‘N,yi e RY

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

S = (Xi:yi)izl,...,T X; € R‘N,yi e RY

Introduction to Supervised Machine Learning
Given: Input-output examples of the form:
S = (X, ¥i)i=1..T X; € RYy, ¢ RY

Assumption: Data is generated by a “true ” function, with some added noise:

y: = f(x:) + v

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:
N M
S = (x, Yi)z'zl,...,T x; ER7,y;, €R

Assumption: Data is generated by a “true ” function, with some added noise:
yi = f(x;) + v
Goal: Learn an approximation f(X) of the generator function to use on new data:

f(x) = f(x)

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:
N M
S = (x, Yi)z'zl,...,T x; ER7,y;, €R

Assumption: Data is generated by a “true ” function, with some added noise:

y: = f(x:) + v

Goal: Learn an approximation f(X) of the generator function to use on new data:

f(x) = f(x)
Loss function: A distance betweenf(X) arﬂx) such that we car:f{é?)
“good” if L is low across many given instances of S.

L:RM «RM s 20

is

Aim: Learn a function with low “risk”

Risk: What we want to minimize

R(f) = E[L(f(X),Y)]

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Aim: Learn a function with low “risk”

Risk: What we want to minimize
R(f) = E[L(f(X),Y)

Empirical Risk: What we can actually calculate
(for a “candidate” model h, averaged over N training

N
R™(h) = 1/N Z L(h(xi),y:)

examples)

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Common Approaches

- Linear/Polynomial/Logistic Regression
- (Boosted) Decision trees

- Support Vector Machines

- Naive Bayes

- Neural Networks!

P(B)

Inputs = ®¥ Hidden Layer € B¥' Hidden Layer € R Hidden Layer ¢ B¥' Outputs ¢ BM

Images of regressions, decision tree, and SVM from scikit-

loAarin Aver

you vs the guy she told you not
to worry about:

—
ANN:s initially inspired by the brain:
Alexander Bain (1873), William James (1890)
Electrical connections/flow of neurons result in thought
and movement
McColloch & Pitts (1943)
Modern mathematical “artificial” NN models (not the only neural

Artificial vs Biological NNs

Inputs Xz

X3
X5
Xs

Source: linkedin.com/company/deeplearningai

network model!)
Rosenblatt (1958)
Description of the perceptron
Rumelhart, Hinton & Williams (1986)
Multi-layer perceptrons and error backpropagation (learning principle)

Modern:
- ANNs used everywhere for everything!
- Simplified, abstracted version of “synaptically”-connected “neurons”
- Biologically implausible

Building a Neural Network
From Scratch (mathematically)

®

® @
26

1

Z9

1

Classes are “linearly separable”

L2

>

Yy = wo+ wix] +woxo + ... + wpTny

w; < Coefficients
x; <— Variables

et

y=r

(’wo—l—’w
1x1+w2x2+...+wnxn)

P

y = 7(wo+wir]+woro+ ... +wpxy)

The “Perceptron”

Generalized “activation
function”

A

_)y

- The modern notion of a single “neuron”
- BUT: Only works on linearly separable classes

I1

Zo

L1

I

L2

(o}

Multi-layer Perceptrons (MLPs)

1

Ny
) () (1) () () (I

et

(V= 0(w0+w1331+w23:2+... +wnxn)

WL

L]
L2

wnxn)

Activation “Bias”

A l

a

y = o(wy

T

“Activation function”

o(w'x)

J—
w

wiry

e w9

T

“Weight vector”

wox?
R
X
xr = |wxo

T

“Feature vector”

wnxn)

Activation/

output
of neuron k _ _
l 1
k [k .k SRR
0O = [wo ’lUl < wn] _
Tn

K "hidden” neurons
in layer L

1 1

f— wo w]_ .o

2 2

f— wo w]_ .o

1 1

f— wo w]_ ...

2 2

f— wo w]_ ...

1
Wy

2
Wy

-
L]
-

|

w2...

2

w2 « o .

k

wl w2 . s

Wy,

k
W,

7

o = WZ+b

Most common way of writing out the
activation of a layer of an MLP

B 1
L1 [2]
h

-2 —1_ ,0
| In_ wé“

A

y = o(wy+wir]+woro+...+wnn)

y =(ofwo+w1x]+woxo+ ...+ wpxy)

0o=o(Wzx'" +b)

The output of each layer is the product of its weight matrix and the input
vector plus its bias vector, all wrapped in a non-linear activation function.

= =
Inputs

Outputs

N
il—
X WA
NS SLFIL LT A
Z NN S

XA
77

4
45 Lol
XS

R HRER
o AR
A RO 7 AR
ST TR, SO TSR
VAT HET RN

AT AR

W
T SR \
NN

A)f.
AL AR
SN\

A SN
722 SSN\
SN\~

Inputs € RY Hidden Layer € R”* Hidden Layer € R”> Hidden Layer € R¥ Outputs € RY

N /
‘\\\\\‘ —
NN S ST 22

RN ot
3 NS 2
NSX KL 7
NSS4/
>

¢
¢ Wi S A,
RO X545

ST 7

s
il—
NN A

NS F7

\ oS H Jr4E

RIS AL,
A A B4

WRPLY. SV,

A
7.
ALLX

\"'

TP
'0‘\'4;

A
LD

WA 0
AR
k;sx\:._:
P\

N

2 FAY AN
SO,
7 W
/ g4 B B RN
) AAA7 SRR
Z i AN

AN

AN A NN
s !
5 X %‘_a‘\‘\:s“/

by) % .

b el AW N et

AN

S [(‘\\ NS =
R 2L RO

DA 7S>ESRNN V275N
227 SIS\ AT SN

X
Nl

—
L7 W

SR
Inputs € RY

<A
&7) NS 977
NS/ NS Y7 s
e NN N\ ¥ l/) 1S
N XA NS FLe A
e =\)
NOCCANAEL S SOl R RPN LA 50
ENRIRSGAL 7 RS GALL A
RS XN L M K
LT N S SO
*, ..
/f‘::t,’%""/ <
CNKALTA rZaay

NRKEL S
SRR,

LX)
%5

RST XTI SR
ERATBIRESIN .
3 SRR 20 T
S ERIERIRRN
IR ISR NEARB RSN
VAT RSN AP RSET RN
%,5@;3.@.&93& A SRR
Z W NSNS Zh W NSNS
N AN S K7 SN
LI 2O 4
P2

Inputs € RY Hidden Layer € R

yr7 AN s
(‘Ijﬂﬁ- ﬂ\\\\\‘ lll
2] =\\xoeg
1y G &7
L WX £L 71

—
ST Nl A BLV L Z
XX JLH I

N NI
N
I,

i’y/,’

7 LT
NAERY 7]

SRS S H
NNRRRK KL
\\.3‘?‘““%:&;"«; s

57
\:' ,f“‘}' RS gty
WED NN 0 N _
NSRS A N
£ NRRK SRS D 74
B DRI GBS SR
XA RSk V020N N KA
R X
SR NZBE

| 3
: KT S O X
AT 5% SeS4 L2 SSHTESL
SR RS0 ZR < OSEEERR
IATSEIAA %\"A‘Qt SAPH BT ATAK L 3\ : \
e R AMRPOIXK : XE)
S AR

X P& / AT NS
RN . 20 e N
5

s
AL AT R RN
VAN T RN

izl s /
1759547 KIS RO / ST KIS T \
OISR . B3R

ST RIERNT

e %ﬁ‘ﬁ{“‘—‘ "*‘#’iéf’/"ﬁ f’%‘:*‘“ g
A 27 S R e AT AN
{7754 SN Z N

Inputs € RY Hidden Layer € R¥' Hidden Layer € R

A
‘Wff
NS0
\‘ Af'f -
NN XN LK LT 77

WARNCK SEALIH
. A-:t:\\\\\‘-‘.\.))

& i\ Ry |
/ NS EL RN AL AL
ZaAVA LY
. SRR
\

<X X 7% or \,--tv?.".'c, 7 L%
7 7 L ORI NSRRI,
27 7\ RO R e
XN 7 3 g
177 / RN 3 SR 2
7 R BN SRR AL
S Zawid BAXN e AZAXZN
? A oK YW AE— A {57 R E—
2NN X }'9‘:";::\ /':::'0_‘"0‘{ % ’):, :z:::\ 4\% IR
y, b5, > & % 4 ‘), L ') vl
2N S =9, FOREN LR
X X3 > Nl ¥ SO
IS ';. A RESF
Vo K 3
BT RS DL R
’ :

7 %

iy),

AL I ’, T
A AN N
17590490 KIS TR
,/// Ilfl:{:ﬁ'f.’/ ‘\'stc“k"%\l‘ﬂt
7 A LA AN AR
TR LT A /‘\éﬂ\\\\‘ \

TAES
DI
KX

B
L

7 7542
Vi
Zn) e

7757 SN
) S\ }

Inputs € RY Hidden Layer € R* Hidden Layer ¢ R*2 Hidden Layer € R

\ o L7 Jf,%
é\\“‘\v “% é’i v"}-ﬂ#
N N7 S5 Y '
NS 47
157
-,

X7
3)
) e F L

\ WA
RN

§ 1S

A D0
ALLSSE\
WA

v,

Inputs € RN

“)!"‘r’" Y= = /487 \

b WA o % = AL I W B R, e

7 DRETHE BRSNS \f:""; 2N e

DBAREINN DRI

05 RN U0 YR

Z) VAN C I A R

) NN N A O\ N
412 £ L Bty

a0 AU \

.,

<7 Sl

Hidden Layer € R¥' Hidden Layer € R Hidden Layer € RH

Outputs € RM

A multi-layer perceptron is a series of
affine transformations of an input
vector, each of which is wrapped in a
non-linear activation function.

N RY 5 RM
N, M e N

(Translation: an MLP is a fancy function)

A Note on Nonlinearity

Without a non-linear activation function, a series of linear transformations would
result in just a linear transformation of the input to the output.

We would still be stuck in the land of linear separability!

Loss functions

1 .
MSE == (yi — i)
Depends on the task! i=1

Mean Squared Error
Used for e.g. regression tasks

Cross Entropy
Used for e.g. classification tasks

Define your own!
Note: Must be differentiable for gradient descent based methods

Common nonlinear functions

1

0.5F

—

1
Sigmoid: o(x) = ———
i (@) 1 +e®
. ex —_ e_x
Hyperbolic tangent: tanh(z) = ———
et +e "

Rectified Linear Unit:
ReLU(x) = max(0, x)

Implementing learning: Gradient Descent

Given:
Family of parameters © (e.g. possible weights of a NN)
Differentiable risk function R(0)

Goal 0oyt = argmin R(6)
0eo

Backprop: Gradient descent

A

R(6)

\4

“Learning rate”

Y

00,

R(6)

R(6,)

01

“Guess” J 0

RO R0,

R0,
R(6)

9:1 7 65

R(6)

96, 0

Converges to local minima

Backprop: Efficient NN GD

- Goal: change ©(|9]?) €(|9))
- Recall a NN:

N(a’:)—a ohfoa™ oh o . . oa'oh'x

- Use the chain rule to compute the derivatives from output to input
“Backpropagation of errors”

A “real” loss landscape:
- Many (many many) local
minima
- Saddle points

AN

AV
AV v,

\

-
Z
2
Ve

b

R
RN
;\‘nsa A

N
\

http://www.telesens.co/2019/01/16/neural-network-loss-visualization/

Optimizers

Stochastic/Mini-batch GD: Speed improvement!

Perform backprop on errors of batches of training samples instead of all at
once

- Reduces the number of expensive backward passes

Optimizers determine exactly how backpropagation is implemented
- Stochastic Gradient Descent (most common)
- Adam
- RMSProp

Optimizers

Stochastic/Mini-batch GD: Speed improvement!

Perform backprop on errors of batches of training samples instead of all at
once

- Reduces the number of expensive backward passes

Optimizers determine exactly how backpropagation is implemented
- S &\astic Gradient Descent (most common)
- Adam
- RMSProp

ML Training paradigms (a selection)

Supervised
- Train a model with explicit input-output pairs
- Unsupervised
- Learns “patterns” from unlabelled data
- Semi-supervised learning
- Learn a few things with input-output pairs, relate them to patterns learnt
unsupervised
- Reinforcement Learning
- Learn an optimal “policy” that gives you the best action to take at any given state
space by taking random actions and learning through positive or negative
reinforcement.
- Evolution
- Optimize parameters through (Darwinian) evolution; e.g. genetic algorithms.

Types of Neural Networks

Multi-layer Perceptrons

Useful for static input-output
relations

More hidden layers ~ better
approximation of more
complicated functions

Quick to design and implement

Inputs € RY Hidden Layer € R' Hidden Layer € R** Hidden Layer € R" Outputs ¢ RM

Convolutional Neural Networks

Learn “kernels”, i.e. matrices that convolve over n-
dimensional data to extract abstract, lower-
dimensional features.

Used often in image and signal processing tasks
such as object detection and segmentation.

Accounts for translational variance: the object
can be anywhere in the image and still be found

10 output units B). oz g
fully connected

~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links

layer H2 .
12 x 16=192 , ,
hidden units ~ 40,000 links
from 12 kernels
X 5x8
layer H1
12 x 64 = 768
hidden units
H1.1
R ~20,000 links

from 12 kernels

5x5

256 input units

!
F

= pisit 4
JENENEEEEEE

LeNet'’s architecture: One of the first CNNs
https://doi.org/10.1162/neco.1989.1.4.541

LSTM cell At
S |

f; i) © ()
: & :
hey '1‘

Xt

. An LSTM cell schematic. Adapted from:
Outputs go back and forth between neurons (loops exist doi_org,10_4233,uuid;dc7361ﬁ?0496_459a_

in the gra phS) 986f-de37f7f250c9

wvoO

Recurrent Neural Networks

N

° . Aty nv '\ “\
Approximates dynamical systems i, J""f” il

- Any time-based function
- Any data that can be modelled as being |
) § — o ‘ ‘IIM
ordered | Tl \l"l'\
input signal . (lzulprl:t (;)r
Used often in time-series tasks like signal processing, e earvor TG
NI '.‘I‘U|..‘ J 4

natural language processing

Echo state network schematic. Adapted from

Several types: Fully-connected, LSTMs, GRUs, reservoirs www.scholarpedia.org/article/Echo_state_networ

Graph Neural Networks

Models any system that can be modelled as a graph

Lea rn S re I ati o n s betwee n n Od es 9 Input Graph GNN blocks Transformed Graph Classification layer Prediction
edges, global properties ' '

v
v
L113
111}
L
v

et

Used in e.g. image segmentation,
chemistry and pharmacy models,

N LP, hier‘a r'Chica | |y- related data Image adapted from this excellent intro to GNNs: https://distill.pub/2021/gnn-
intro/

What NNs can and can’t do

Universal Approximation Theorem

Theorem (schematic). Let F be a certain class of functions f : REX — RM,
Then for any f € F and any € > 0 there exists an multilayer perceptron N with
one hidden layer such that || f — N|| < .

= We can approximate any function we want with a one-layer MLP!
More effective with more layers than just one (“deeper” networks)
Easier said than done in practice

Collection of proofs:
https://ai.stackexchange.com/questions/13317/where-can-i-find-
the-proof-of-the-universal-approximation-theorem

Schematic borrowed from Jaeger, H. (2022) Neural Networks Lecture
Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Where NNs thrive

> Statistical/correlation inference needed

> There exists a lot of good quality (labelled) training data
> Parallelizable training and deployment

> Tasks without expansion (input-output fixed)

> Specialized tasks

> Good in-range performance IRL

https://lasp.colorado.edu/home/minxss/2016/
07/12/minimum-mission-success-criteria-met/

Limits of NNs

> No causal relations possible (yet)
> Very data hungry - “Garbage in, garbage out”
> Often expensive to train

> Nonextensible and specialized to a range and task
- Add one more neuron = retrain the entire networ

- Undefined behaviour on out-of-domain test
examples

https://knowyourmeme.com/memes
/grumpy-cat

In practice

Frameworks

You don’t need any maths or programming skills (but hopefully you do!)

Use other people’s code! libraries, frameworks, modules

Keras Te,,]’ O PyTorch

orFlow

pandas

/

X G B oost Image of logos adapted from S. Summers, ISOTDAQ

Lecture on Machine Learning (2020) - Slide 8

A demonstration in Keras

Adapted from:

Erdmann, M., Glombitza, J.,
Kasieczka, G., & Klemradt, U.
(2021).

Deep Learning for Physics Research.

y /[km

—4 4

—6

L]
e e @0

LI L

CIC I B)
(X EXEIL
IR)
se o0 e
T T T T T
=50 =25 0.0 25 5.0
X/ km
oee
oo e e
eee e
e 0o
(X EXE]
eo 00 8
(LN R
LI]
e o0
T T T T T
-50 -25 00 2.5 5.0
X [km

I
=]
n

I |
|
S =]

|
N
o

normalized time [a.u.]

normalized time [a.u.]

y/ km

O
L]
e 0
e o0
ee 0
LK)

T T T T T
-5.0 =25 0.0 25 5.0
X / km

(X EXX]
ses 0w
eevs0ne0e
eev 00 o0 e
eecs00eeoece
A EEEIEEX]
(X EEEXAEXERI
IR
oesecveceo
s oo e 9 a

®|® e 0 ¢

normalized time [a.u.]

normalized time [a.u.]

Training tips

Overfitting & Underfitting

The real troublemakers in ML in general!

Underfitting: When the model fits the training data not well enough
- Empirical risk is high, actual risk is high
- Training loss is high, testing loss is not optimal

Overfitting: When the model fits the training data too closely (incl. noise)
- Empirical risk is low, actual risk is high
- Training loss is low, testing loss is not optimal
- e.g. An D-degree polynomial can fit D-1 training points with zero error

Overfitting & Underfitting

y N

Underfitting 3 Balanced " Overfitting

More complex models (e.g. more layers, neurons per layer) -> higher likelihood of overfitting

Image source: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set

Test Set (unseen)

Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set
- e.g. 80-20 split (Note: split ratio depends on the model, task and data)

80% 20%

k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

kR-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

kR-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

kR-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

kR-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

kR-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

kR-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

Result = average over all validation passes

Training curves

Important to plot!

09

0.8

07

0.6

0.5

0.4

Loss curves

—— train loss
—— val loss

Accuracy curves

0.725

0.700 1

0.675 1

0.650

0.625 1

0.600

0.575 1

0.550 1

— val acc
—— train acc

o 4

T

8

Accuracy curves

Loss curves
\ —— train loss 0.725 4
"\ —— val loss :
09—\
0.700 1
== 08 l 0.675
Training curves
07
0.625 A
0.6
0.600
Important to plot!(!!!) 0575
0.550 4 — valacc
04 —— train acc
0 2 4 6 8

T

T
0 2 4 6 8

ACCUFECY curves

Loss curves

\ = train loss 0.725 4

\ — val loss
09

0.700 1

o8 0.675 1

Training curves

0.650 1
07

0.625 1

0.6
0.600

Important to plot!(!!!!

0.575 1

0.550 — val acc
04 —— train acc

T T T T T
0 2 4 6 8

Shows if and how fast your model is learning on task-relevant metrics
- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

Training curves

ACCUFECY curves
Loss curves
—— train loss 0.725 4
\ — val loss
09 \
\ 0.700
\
0.8 \\\ 0.675
0.7
0.6
Important to plot!(!!!!

0.650

0.4

0.625 1

0.600
2

0.550
- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

T
0

— val acc
T
4

—— train acc

Shows if and how fast your model is learning on task-relevant metrics

T
8

May indicate potential over and underfitting

-- Training Loss

--Validation loss

Reading training curves

If

0 5 10 15

validation loss > training loss

then often the model is good!
Low loss ==

Better

\ Training Loss

idation loss

Reading training curves

If 0 5 10 15

validation loss >> training loss

then often the model is overfitting
Low loss ==

Better

Reading training curves

If

—10

-- Training Loss

-- Validation loss

validation loss ~ training loss

Low loss ==

Better

then often the model is underfitting

—10

-- Training Loss

-- Validation loss

Reading training curves

If

0 5 10 15

validation loss < training loss

then something is very wrong, or totally expected!
Low loss ==

Better

Regularization

e L|1/L2 Regularization

Added losses: d
Al A wy
1=1 '

e Dropout (on when training, off when testing/deploying)
e Early stopping

Parallelization:
Speeding up NNs

Main math operation in NNs:
- Matrix-vector multiplications

—
LSTM1 I 1.2
[

B CPU

1
MLPO = 2.5 B GPU

Wy
B TPU

1

MLPT 0.3

. 18.5

1

LSTMO mmm 0.4

3.5

1.2

I 1
CNNO I 1.6

. 40.3

1

I
CNNT I 2.7

71

0.5 1 5 10 50

- Element-wise nonlinear activation functions

Parallelization can be used to massively speed up learning and deployment!

- Multi-core CPUs

- Graphics processing units (GPUs)

- Tensor processing units (TPUs)
- FPGAs

Image from https://cloud.google.com/blog/products/ai-
machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu

UQ 1: Bias-Variance Decomposition

o=3.181 EeV

2500 §= —0.6 EeV

2000 A

Events
=
Ln
o
o

1000 A

500 A

-10.0 -1.5 =5.0 =25 0.0 2.5 5.0 7.5
Erec - Etrue

10.0

UQ2: Calibration

1.0 1

0.8

o
[=)]
1

Fraction of positives
o
=Y

0.2 1

0.0

—— Model

-—~ Reference

0.4 0.6
Mean predicted value

0.8

1.0

UQ2: Calibration

1.0 1

o o
o [
1 1

Fraction of positives
©
S

0.2 1

0.0

- Model

- -~ Reference

% J T
0.4 0.6 0.8
Mean predicted value

1.0

UQ3:

Conformal

Inference

T

Traditional Approach

Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B.,
... & Davis, R. W. (1999). Functional characterization of the S. cerevisiae genome by
gene deletion and parallel analysis. science, 285(5429), 901-906.

UQ Others

Markov-chain Monte Carlo (and variations: HMC, Langevin Dynamics, etc)
Neural linear models

Deep Ensembles

Variational Inference

Monte Carlo Dropout

UQ Others

Markov-chain Monte Carlo (and variations: HMC, Langevin Dynamics, etc)
Neural linear models

Deep Ensembles

Variational Inference

Monte Carlo Dropout

Frontiers

Deep learning
- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable Al (XAl)
- Explainable+interpretable models
- Human-like and human-understandable reasoning

Reservoir computing Others: Physics Informed NNs
- Echo state networks Neural ODEs, PDEs

- Conceptors Group equivariant DL

	Slide 1: An Introduction to Neural Networks
	Slide 2: Why you should consider Neural Networks
	Slide 3: Why I don’t need to convince you to use Neural Networks
	Slide 4: Why I don’t need to convince you to use Neural Networks
	Slide 5: The short answer
	Slide 6: The short answer
	Slide 7: The short answer
	Slide 8: The short answer
	Slide 9: The short answer
	Slide 10: The short answer
	Slide 11: Introduction to the introduction
	Slide 12: Introduction to the introduction
	Slide 13: Introduction to Supervised Machine Learning
	Slide 14: Introduction to Supervised Machine Learning
	Slide 15: Introduction to Supervised Machine Learning
	Slide 16: Introduction to Supervised Machine Learning
	Slide 17: Introduction to Supervised Machine Learning
	Slide 18: Aim: Learn a function with low “risk”
	Slide 19: Aim: Learn a function with low “risk”
	Slide 20: Common Approaches
	Slide 21: Artificial vs Biological NNs
	Slide 22: Building a Neural Network From Scratch (mathematically)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: The “Perceptron”
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Multi-layer Perceptrons (MLPs)
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50:
	Slide 51:
	Slide 52:
	Slide 53:
	Slide 54:
	Slide 55:
	Slide 56
	Slide 57:
	Slide 58: A Note on Nonlinearity
	Slide 59: Loss functions
	Slide 60: Common nonlinear functions
	Slide 61: Implementing learning: Gradient Descent
	Slide 62: Backprop: Gradient descent
	Slide 63:
	Slide 64:
	Slide 65:
	Slide 66:
	Slide 67: Backprop: Efficient NN GD
	Slide 68:
	Slide 69: Optimizers
	Slide 70: Optimizers
	Slide 71: ML Training paradigms (a selection)
	Slide 72: Types of Neural Networks
	Slide 73: Multi-layer Perceptrons
	Slide 74: Convolutional Neural Networks
	Slide 75: Recurrent Neural Networks
	Slide 76: Graph Neural Networks
	Slide 77: What NNs can and can’t do
	Slide 78: Universal Approximation Theorem
	Slide 79: Where NNs thrive
	Slide 80: Limits of NNs
	Slide 81: In practice
	Slide 82: Frameworks
	Slide 83: A demonstration in Keras
	Slide 84: Training tips
	Slide 85: Overfitting & Underfitting
	Slide 86: Overfitting & Underfitting
	Slide 87: Validation
	Slide 88: Validation
	Slide 89: k-fold Cross-validation
	Slide 90: k-fold Cross-validation
	Slide 91: k-fold Cross-validation
	Slide 92: k-fold Cross-validation
	Slide 93: k-fold Cross-validation
	Slide 94: k-fold Cross-validation
	Slide 95: k-fold Cross-validation
	Slide 96: Training curves
	Slide 97: Training curves
	Slide 98: Training curves
	Slide 99: Training curves
	Slide 100: Reading training curves
	Slide 101: Reading training curves
	Slide 102: Reading training curves
	Slide 103: Reading training curves
	Slide 104: Regularization
	Slide 105: Parallelization: Speeding up NNs
	Slide 106: UQ 1: Bias-Variance Decomposition
	Slide 107: UQ2: Calibration
	Slide 108: UQ2: Calibration
	Slide 109: UQ3:
	Slide 110: UQ Others
	Slide 111: UQ Others
	Slide 112: Frontiers

