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The short answer

- They'’re useful!

- They're fast!

- They're (how) easy to implement!

- They're cute!

- They're definitely not going to take over the world!

https://twitter.com/gdb/status/15125219
12064229377

The long answer

It’s a bit more complicated than that...

OpenAl



Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next
Along with:
- A demo in a simulated environment
- A few tips on building and training your own networks
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Introduction to Supervised Machine Learning

Given: Input-output examples of the form:
N M
S = (x, Yi)z'zl,...,T x; ER7,y;, €R

Assumption: Data is generated by a “true ” function, with some added noise:

y: = f(x:) + v

Goal: Learn an approximation f(X) of the generator function to use on new data:

f(x) = f(x)
Loss function: A distance betweenf(X) arﬂx) such that we car:f{é?)
“good” if L is low across many given instances of S.

L:RM «RM s 20
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Aim: Learn a function with low “risk”

Risk: What we want to minimize

R(f) = E[L(f(X),Y)]

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf



Aim: Learn a function with low “risk”

Risk: What we want to minimize
R(f) = E[L(f(X),Y)

Empirical Risk: What we can actually calculate
(for a “candidate” model h, averaged over N training

N
R™(h) = 1/N Z L(h(xi),y:)

examples)

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf



Common Approaches

- Linear/Polynomial/Logistic Regression
- (Boosted) Decision trees

- Support Vector Machines

- Naive Bayes

- Neural Networks!

P(B)

Inputs = ®¥  Hidden Layer € B¥' Hidden Layer € R Hidden Layer ¢ B¥'  Outputs ¢ BM

Images of regressions, decision tree, and SVM from scikit-

loAarin Aver



you vs the guy she told you not
to worry about:

—
ANN:s initially inspired by the brain:
Alexander Bain (1873), William James (1890)
Electrical connections/flow of neurons result in thought
and movement
McColloch & Pitts (1943)
Modern mathematical “artificial” NN models (not the only neural

Artificial vs Biological NNs

Inputs Xz

X3
X5
Xs

Source: linkedin.com/company/deeplearningai

network model!)
Rosenblatt (1958)
Description of the perceptron
Rumelhart, Hinton & Williams (1986)
Multi-layer perceptrons and error backpropagation (learning principle)

Modern:
- ANNs used everywhere for everything!
- Simplified, abstracted version of “synaptically”-connected “neurons”
- Biologically implausible



Building a Neural Network
From Scratch (mathematically)



®

® @
26

1

Z9



1

Classes are “linearly separable”
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Yy = wo+ wix] +woxo + ... + wpTny

w; < Coefficients
x; <— Variables
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The “Perceptron”

Generalized “activation
function”

A

_)y

- The modern notion of a single “neuron”
- BUT: Only works on linearly separable classes
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Multi-layer Perceptrons (MLPs)
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(V= 0(w0+w1331+w23:2+... +wnxn)
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Activation “Bias”

A l

a

y = o(wy

T

“Activation function”

o(w'x)

J—
w

wiry

e w9

T

“Weight vector”

wox?
R
X
xr = |wxo

T

“Feature vector”

wnxn)



Activation/

output
of neuron k _ _
l 1
k [k .k SRR
0O = [wo ’lUl < wn] _
Tn

K "hidden” neurons
in layer L
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Most common way of writing out the
activation of a layer of an MLP
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A

y = o(wy+wir]+woro+...+wnn)



y =(ofwo+w1x]+woxo+ ...+ wpxy)



0o=o(Wzx'" +b)

The output of each layer is the product of its weight matrix and the input
vector plus its bias vector, all wrapped in a non-linear activation function.



= =
Inputs

Outputs




N
il—
X WA
NS SLFIL LT A
Z NN S

XA
77

4
45 Lol
XS

R HRER
o AR
A RO 7 AR
ST TR, SO TSR
VAT HET RN

AT AR

W
T SR \
NN

A)f.
AL AR
SN\

A SN
722 SSN\
SN\~

Inputs € RY Hidden Layer € R”* Hidden Layer € R”> Hidden Layer € R¥  Outputs € RY



N /
‘\\\\\‘ —
NN S ST 22

RN ot
3 NS 2
NSX KL 7
NSS4/
>

¢
¢ Wi S A,
RO X545

ST 7

s
il—
NN A

NS F7

\ oS H Jr4E

RIS AL,
A A B4

WRPLY. SV,

A
7.
ALLX

\"'

TP
'0‘\'4;

A
LD

WA 0
AR
k;sx\:.\\_:
P\

N

2 FAY AN
SO,
7 W
/ g4 B B RN
) AAA7 SRR
Z i AN

AN

AN A NN
s !
5 X %‘_a‘\‘\:s“/

by ) % .

b el AW N et

AN

S [ (‘\\ NS =
R 2L RO

DA 7S>ESRNN V275N
227 SIS\ AT SN

X
Nl

—
L7 W

SR
Inputs € RY



<A
&7) NS 977
NS/ NS Y7 s
e NN N\ ¥ l/) 1S
N XA NS FLe A
e =\ )
NOCCANAEL S SOl R RPN LA 50
ENRIRSGAL 7 RS GALL A
RS XN L M K
LT N S SO
*, ..
/f‘::t,’%""/ <
CNKALTA rZaay

NRKEL S
SRR,

LX)
%5

RST XTI SR
ERATBIRESIN .
3 SRR 20 T
S ERIERIRRN
IR ISR NEARB RSN
VAT RSN AP RSET RN
%,5@;3.@.&93& A SRR
Z W NSNS Zh W NSNS
N AN S K7 SN
LI 2O 4
P2

Inputs € RY Hidden Layer € R



yr7 AN s
(‘Ijﬂﬁ- ﬂ\\\\\‘ lll
2] =\\xoeg
1y G &7
L WX £L 71

—
ST Nl A BLV L Z
XX JLH I

N NI
N
I,

i’y/,’

7 LT
NAERY 7]

SRS S H
NNRRRK KL
\\.3‘?‘““%:&;"«; s

57
\:' ,f“‘}' RS gty
WED NN 0 N _
NSRS A N
£ NRRK SRS D 74
B DRI GBS SR
XA RSk V020N N KA
R X
SR NZBE

| 3
: KT S O X
AT 5% SeS4 L2 SSHTESL
SR RS0 ZR < OSEEERR
IATSEIAA %\"A‘Qt SAPH BT ATAK L 3\ : \
e R AMRPOIXK : XE)
S AR

X P& / AT NS
RN . 20 e N
5

s
AL AT R RN
VAN T RN

izl s /
1759547 KIS RO / ST KIS T \
OISR . B3R

ST RIERNT

e %ﬁ‘ﬁ{“‘—‘ "*‘#’iéf’/"ﬁ f’%‘:\*‘“ g
A 27 S R e AT AN
{7754 SN Z N

Inputs € RY Hidden Layer € R¥' Hidden Layer € R



A
‘Wff
NS0
\‘ Af'f -
NN XN LK LT 77

WARNCK SEALIH
. A-:t:\\\\\‘-‘.\. ) )

& i\ Ry |
/ NS EL RN AL AL
ZaAVA LY
. SRR
\

<X X 7% or \,--tv?.".'c, 7 L%
7 7 L ORI NSRRI,
27 7\ RO R e
XN 7 3 g
177 / RN 3 SR 2
7 R BN SRR AL
S Zawid BAXN e AZAXZN
? A oK YW AE— A {57 R E—
2NN X }'9‘:";::\ /':::'0_‘"0‘{ % ’):, :z:::\ 4\% IR
y, b5, > & % 4 ‘), L ' ) vl
2N S =9, FOREN LR
X X3 > Nl ¥ SO
IS ';. A RESF
Vo K 3
BT RS DL R
’ :

7 %

iy ),

AL I ’, T
A AN N
17590490 KIS TR
,/// Ilfl:{:ﬁ'f.’/ ‘\'stc“k"%\l‘ﬂt
7 A LA AN AR
TR LT A /‘\éﬂ\\\\‘ \

TAES
DI
KX

B
L

7 7542
Vi
Zn) e

7757 SN
) S\ }

Inputs € RY Hidden Layer € R* Hidden Layer ¢ R*2 Hidden Layer € R



\ o L7 Jf,%
é\\“‘\v “% é’i v"}-ﬂ#
N N7 S5 Y '
NS 47
157
-,

X7
3 )
) e F L

\ WA
RN

§ 1S

A D0
ALLSSE\
WA

v,

Inputs € RN

“)!"‘r’" Y= = /487 \

b WA o % = AL I W B R, e

7 DRETHE BRSNS \f:""; 2N e

DBAREINN DRI

05 RN U0 YR

Z) VAN C I A R

) NN N A O\ N
412 £ L Bty

a0 AU \

.,

<7 Sl

Hidden Layer € R¥' Hidden Layer € R Hidden Layer € RH

Outputs € RM



A multi-layer perceptron is a series of
affine transformations of an input
vector, each of which is wrapped in a
non-linear activation function.

N RY 5 RM
N, M e N

(Translation: an MLP is a fancy function)




A Note on Nonlinearity

Without a non-linear activation function, a series of linear transformations would
result in just a linear transformation of the input to the output.

We would still be stuck in the land of linear separability!



Loss functions

1 .
MSE == (yi — i)
Depends on the task! i=1

Mean Squared Error
Used for e.g. regression tasks

Cross Entropy
Used for e.g. classification tasks

Define your own!
Note: Must be differentiable for gradient descent based methods



Common nonlinear functions

1

0.5F

—

1
Sigmoid: o(x) = ———
i (@) 1 +e®
. ex —_ e_x
Hyperbolic tangent: tanh(z) = ———
et +e "

Rectified Linear Unit:
ReLU(x) = max(0, x)



Implementing learning: Gradient Descent

Given:
Family of parameters © (e.g. possible weights of a NN)
Differentiable risk function R(0)

Goal 0oyt = argmin R(6)
0eo



Backprop: Gradient descent

A

R(6)

\4



“Learning rate”

Y

00,

R(6)

R(6,)

01

“Guess” J 0



RO R0,




R0,
R(6)

9:1 7 65



R(6)

96, 0

Converges to local minima




Backprop: Efficient NN GD

- Goal: change ©(|9]?)  €(|9))
- Recall a NN:

N(a’:)—a ohfoa™ oh o . . oa'oh'x

- Use the chain rule to compute the derivatives from output to input
“Backpropagation of errors”



A “real” loss landscape:
- Many (many many) local
minima
- Saddle points

AN

AV
AV v,

\

-
Z
2
Ve

b

R
RN
;\‘nsa A

N
\

http://www.telesens.co/2019/01/16/neural-network-loss-visualization/



Optimizers

Stochastic/Mini-batch GD: Speed improvement!

Perform backprop on errors of batches of training samples instead of all at
once

- Reduces the number of expensive backward passes

Optimizers determine exactly how backpropagation is implemented
- Stochastic Gradient Descent (most common)
- Adam
- RMSProp
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ML Training paradigms (a selection)

Supervised
- Train a model with explicit input-output pairs
- Unsupervised
- Learns “patterns” from unlabelled data
- Semi-supervised learning
- Learn a few things with input-output pairs, relate them to patterns learnt
unsupervised
- Reinforcement Learning
- Learn an optimal “policy” that gives you the best action to take at any given state
space by taking random actions and learning through positive or negative
reinforcement.
- Evolution
- Optimize parameters through (Darwinian) evolution; e.g. genetic algorithms.



Types of Neural Networks



Multi-layer Perceptrons

Useful for static input-output
relations

More hidden layers ~ better
approximation of more
complicated functions

Quick to design and implement

Inputs € RY Hidden Layer € R' Hidden Layer € R** Hidden Layer € R" Outputs ¢ RM



Convolutional Neural Networks

Learn “kernels”, i.e. matrices that convolve over n-
dimensional data to extract abstract, lower-
dimensional features.

Used often in image and signal processing tasks
such as object detection and segmentation.

Accounts for translational variance: the object
can be anywhere in the image and still be found

10 output units B). oz g
fully connected

~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links

layer H2 .
12 x 16=192 , ,
hidden units ~ 40,000 links
from 12 kernels
X 5x8
layer H1
12 x 64 = 768
hidden units
H1.1
R ~20,000 links

from 12 kernels

5x5

256 input units

!
F

= pisit 4
JENENEEEEEE

LeNet'’s architecture: One of the first CNNs
https://doi.org/10.1162/neco.1989.1.4.541



LSTM cell At
S |

f; i ) © ()
: & :
hey '1‘

Xt

. An LSTM cell schematic. Adapted from:
Outputs go back and forth between neurons (loops exist doi_org,10_4233,uuid;dc7361ﬁ?0496_459a_

in the gra phS) 986f-de37f7f250c9

wvoO

Recurrent Neural Networks

N

° . Aty nv '\ “\
Approximates dynamical systems i, J""f” il

- Any time-based function
- Any data that can be modelled as being |
) § — o ‘ ‘IIM
ordered | Tl \l"l'\
input signal . (lzulprl:t (;)r
Used often in time-series tasks like signal processing, e earvor TG
NI '.‘I‘U|..‘ J 4

natural language processing

Echo state network schematic. Adapted from

Several types: Fully-connected, LSTMs, GRUs, reservoirs www.scholarpedia.org/article/Echo_state_networ



Graph Neural Networks

Models any system that can be modelled as a graph

Lea rn S re I ati o n s betwee n n Od es 9 Input Graph GNN blocks Transformed Graph Classification layer Prediction
edges, global properties ' '

v
v
L113
111}
L
v

et

Used in e.g. image segmentation,
chemistry and pharmacy models,

N LP, hier‘a r'Chica | |y- related data Image adapted from this excellent intro to GNNs: https://distill.pub/2021/gnn-
intro/




What NNs can and can’t do



Universal Approximation Theorem

Theorem (schematic). Let F be a certain class of functions f : REX — RM,
Then for any f € F and any € > 0 there exists an multilayer perceptron N with
one hidden layer such that || f — N|| < .

= We can approximate any function we want with a one-layer MLP!
More effective with more layers than just one (“deeper” networks)
Easier said than done in practice

Collection of proofs:
https://ai.stackexchange.com/questions/13317/where-can-i-find-
the-proof-of-the-universal-approximation-theorem

Schematic borrowed from Jaeger, H. (2022) Neural Networks Lecture
Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf



Where NNs thrive

> Statistical/correlation inference needed

> There exists a lot of good quality (labelled) training data
> Parallelizable training and deployment

> Tasks without expansion (input-output fixed)

> Specialized tasks

> Good in-range performance IRL

https://lasp.colorado.edu/home/minxss/2016/
07/12/minimum-mission-success-criteria-met/



Limits of NNs

> No causal relations possible (yet)
> Very data hungry - “Garbage in, garbage out”
> Often expensive to train

> Nonextensible and specialized to a range and task
- Add one more neuron = retrain the entire networ

- Undefined behaviour on out-of-domain test
examples

https://knowyourmeme.com/memes
/grumpy-cat



In practice



Frameworks

You don’t need any maths or programming skills (but hopefully you do!)

Use other people’s code! libraries, frameworks, modules

Keras Te,,]’ O PyTorch

orFlow

pandas

/

X G B oost Image of logos adapted from S. Summers, ISOTDAQ

Lecture on Machine Learning (2020) - Slide 8



A demonstration in Keras

Adapted from:

Erdmann, M., Glombitza, J.,
Kasieczka, G., & Klemradt, U.
(2021).

Deep Learning for Physics Research.
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Training tips



Overfitting & Underfitting

The real troublemakers in ML in general!

Underfitting: When the model fits the training data not well enough
- Empirical risk is high, actual risk is high
- Training loss is high, testing loss is not optimal

Overfitting: When the model fits the training data too closely (incl. noise)
- Empirical risk is low, actual risk is high
- Training loss is low, testing loss is not optimal
- e.g. An D-degree polynomial can fit D-1 training points with zero error



Overfitting & Underfitting

y N

Underfitting 3 Balanced " Overfitting

More complex models (e.g. more layers, neurons per layer) -> higher likelihood of overfitting

Image source: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html



Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set

Test Set (unseen)




Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set
- e.g. 80-20 split (Note: split ratio depends on the model, task and data)

80% 20%



k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models
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kR-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.
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kR-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

Result = average over all validation passes



Training curves

Important to plot!
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—— train loss
—— val loss

Accuracy curves
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Accuracy curves

Loss curves
\ —— train loss 0.725 4
"\ —— val loss :
09—\
0.700 1
== 08 l 0.675
Training curves
07
0.625 A
0.6
0.600
Important to plot!(!!!) 0575
0.550 4 — valacc
04 —— train acc
0 2 4 6 8

T

T
0 2 4 6 8



ACCUFECY curves

Loss curves

\ = train loss 0.725 4

\ — val loss
09

0.700 1

o8 0.675 1

Training curves

0.650 1
07

0.625 1

0.6
0.600

Important to plot!(!!!!

0.575 1

0.550 — val acc
04 —— train acc

T T T T T
0 2 4 6 8

Shows if and how fast your model is learning on task-relevant metrics
- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs



Training curves

ACCUFECY curves
Loss curves
—— train loss 0.725 4
\ — val loss
09 \
\ 0.700
\
0.8 \\\ 0.675
0.7
0.6
Important to plot!(!!!!

0.650

0.4

0.625 1

0.600
2

0.550
- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

T
0

— val acc
T
4

—— train acc

Shows if and how fast your model is learning on task-relevant metrics

T
8

May indicate potential over and underfitting



-- Training Loss

--Validation loss

Reading training curves

If

0 5 10 15

validation loss > training loss

then often the model is good!
Low loss ==

Better



\ Training Loss

idation loss

Reading training curves

If 0 5 10 15

validation loss >> training loss

then often the model is overfitting
Low loss ==

Better



Reading training curves

If

—10

-- Training Loss

-- Validation loss

validation loss ~ training loss

Low loss ==

Better

then often the model is underfitting



—10

-- Training Loss

-- Validation loss

Reading training curves

If

0 5 10 15

validation loss < training loss

then something is very wrong, or totally expected!
Low loss ==

Better



Regularization

e L|1/L2 Regularization

Added losses: d
Al A wy
1=1 '

e Dropout (on when training, off when testing/deploying)
e Early stopping



Parallelization:
Speeding up NNs

Main math operation in NNs:
- Matrix-vector multiplications

—
LSTM1 I 1.2
[

B CPU

1
MLPO = 2.5 B GPU

Wy
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1
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. 18.5

1
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I 1
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. 40.3

1

I
CNNT I 2.7
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- Element-wise nonlinear activation functions

Parallelization can be used to massively speed up learning and deployment!

- Multi-core CPUs

- Graphics processing units (GPUs)

- Tensor processing units (TPUs)
- FPGAs

Image from https://cloud.google.com/blog/products/ai-
machine-learning/an-in-depth-look-at-googles-first-tensor-
processing-unit-tpu



UQ 1: Bias-Variance Decomposition

o=3.181 EeV

2500 §= —0.6 EeV

2000 A

# Events
=
Ln
o
o

1000 A

500 A

-10.0 -1.5 =5.0 =25 0.0 2.5 5.0 7.5
Erec - Etrue

10.0



UQ2: Calibration
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UQ2: Calibration
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UQ3:

Conformal

Inference

T

Traditional Approach

Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B.,
... & Davis, R. W. (1999). Functional characterization of the S. cerevisiae genome by
gene deletion and parallel analysis. science, 285(5429), 901-906.



UQ Others

Markov-chain Monte Carlo (and variations: HMC, Langevin Dynamics, etc)
Neural linear models

Deep Ensembles

Variational Inference

Monte Carlo Dropout



UQ Others

Markov-chain Monte Carlo (and variations: HMC, Langevin Dynamics, etc)
Neural linear models

Deep Ensembles

Variational Inference

Monte Carlo Dropout



Frontiers

Deep learning
- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable Al (XAl)
- Explainable+interpretable models
- Human-like and human-understandable reasoning

Reservoir computing Others: Physics Informed NNs
- Echo state networks Neural ODEs, PDEs

- Conceptors Group equivariant DL
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