
ISOTDAQ JUNE 2023, ISTANBUL

Machine Learning

for Trigger and Data Acquisition

Thomas James (CERN)

thanks to Sioni Summers (CERN) for last year’s slides

1

Contents

2

• Recap of ML

• NN recap - CNN, RNN, GNN

• Tools and Frameworks

• ML in HEP and TDAQ

• Examples

• GPUs

• FPGAs

• Tools, High level synthesis, Quantisation

• Examples

Motivation
Scientific discoveries come from groundbreaking ideas and the capability to
validate those ideas by testing nature at new scales—finer and more precise
temporal and spatial resolution. This is leading to an explosion of data that
must be interpreted, and ML is proving a powerful approach. The more
efficiently we can test our hypotheses, the faster we can achieve discovery. To
fully unleash the power of ML and accelerate discoveries, it is necessary to
embed it into our scientific process, into our instruments and detectors.

“

”
Applications and Techniques for Fast Machine Learning in Science

3

https://arxiv.org/pdf/2110.13041.pdf

Introduction to ML & NN designs
4

Introduction to machine learning

• Decision tree thresholds and
prediction probabilities are
learned from the training data

5

• Build models which learn patterns from data to later make predictions on unseen data

• Example: predict whether a person will like computer games from characteristics

• ML has been used to great effect in HEP, even since 1980s

• Most commonly in offline analysis and reconstruction

• But increasingly in realtime / trigger & DAQ

• ML, and Fast ML are extremely popular - lots of good tools out there

Neural Networks

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

6

Fully Connected or Dense Neural Networks

• Loosely inspired by brain structure with neurons and synapses

• Neurons are real valued representations of ‘something’

• Synapses connect neurons (in one direction) with a weight

• Input neurons are your data variables

• Output neuron(s) are your predictions

• class probabilities,

• or continuous variables if performing a regression

• Hidden layers bring the performance of deep neural networks

• Intermediate layers of neurons learn a more abstract representation of the data

• More capable than ‘shallow’ networks on raw data

• Many topologies exist for different types of problems

Neural Networks

ReLUXn = gn(Wn,n−1xn−1 + bn)

7

Non-linear
activation function

Matrix of weights
Bias vector

addition

• The values of neurons in a layer is given by the product of the neuron values of the previous layer and
the matrix of weights, with an added ‘bias’, and a non-linear ‘activation function’ applied

• Without the activation function, we’re just doing linear transformations of our variables

• Values of weights and biases learned from data during training

• Minimise loss function to get the best performing network

• Predictions as close to true labels as possible

• Update the (initially not very good) network parameters by evaluating the derivative of the loss
function w.r.t those parameters, and iterate!

• Supervised learning - start with a NN of randomised weights and a collection of training data

• Evaluate performance network with a loss function, e.g. mean squared error:

Training with Gradient Descent

8

wj = wj − lr∂
L

∂wj
L(y, ̂y) =

1
m

m

∑
i=1

(yi − ̂yi)2

PredictionTruthLoss Learning rateWeights

Tools / Frameworks

9

• Many excellent software tools and frameworks are out there for building ML models, training
and deploying them

• There are particularly good sets of tools in Python

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense

from sklearn.model_selection import train_test_split

import uproot

X, y, = uproot.open(‘data.root’).arrays([…])

X_train, X_test, y_train, y_test = train_test_split(X, y)

inputs = Input(shape=(3,))

hidden = Dense(64, activation=‘relu’, input_shape=2, name=‘hidden’))(inputs)

output = Dense(1, activation=‘sigmoid’, name=‘output’))(hidden)

nn = Model(inputs=inputs, outputs=output)

nn.compile(optimizer=“Adam”, loss=“binary_crossentropy”, metrics=[“accuracy”])

nn.fit(X_train, y_train, batch_size=100, epochs=10)

nn.save(‘nn.h5’)

Dummy example - Keras NN

10

• Convolutional Neural Networks for images: apply convolutional filters - small neural networks - scanning over the pixels

• Reduces the number of parameters compared to feeding the pixels into a Fully Connected NN

• Adds translational invariance: the object in the image could be anywhere, and is filtered down by the convolutions

Convolutional Neural Networks

11

towardsdatascience.com [8]

http://towardsdatascience.com

• Built in memory

• Used for ordered data, e.g. time series, natural language processing

• Few different flavours: Long Short Term Memory (LSTM), Gate Recurrent Unit (GRU)

Recurrent Neural Networks

Image: colah’s blog

12

• The LSTM cell has an internal state, and fully connected neural networks update this at each
iteration

• Could be used, e.g. to predict the next word in a sentence

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

• Well suited to problems described by graphs of
vertices and edges

• Cluster / classify data not only according to its
coordinates, but its neighbourhood

• Iteratively update (strengthen/weaken) connections
with fully connected or convolutional networks

• Used in, e.g., molecule synthesis for drug discovery

• Promising in HEP for multi-clusters in ‘point cloud’ like

detectors (sparse images),

• e.g. tracking, calorimetry in high pileup; hierarchical

type problems, e.g. tracking, jets

Graph Neural Networks

13

• Sequence-to-sequence type problems

• The big Natural Language Processing (NLP) models like BERT and GPT3

• Billions of parameters

• Unlike RNNs the full sequence enters at once - more paralellizable

• Attention mechanism - learning relationships / context

• Also relevant in HEP - Particle Transformer (ParT) (jet tagging)

Transformers

eidosmedia.com [9]

14

https://arxiv.org/pdf/2202.03772.pdf
http://eidosmedia.com

• There’s a lot of tricks and a rich literature of best practises to get best performance
(including computational):

• Training with batches - evaluate the gradient for the mean over a batch of samples rather
than for every sample

• Tuning the learning rate, optimizer

• Choosing a loss function, activation function

• Choosing the best network architecture

• Type of network, number of layers, number of neurons in each layer

• Hyperparameter scan / optimization - automatically search for the best solution to the above
for your problem

• e.g. Keras Tuner, Ray Tune

• Run network compression / pruning during training: improve robustness of your NN, and
improve computational performance

General tips

15

Examples in High Energy Physics
16

Machine Learning @ LHC

17

• ML methods typically employed in offline analysis or
longer latency trigger tasks

• Many successes in HEP: identification of b-quark jets,
Higgs candidates, particle energy regression, analysis
selections, ….

• ML algorithms used offline for

• improving Higgs mass resolution with particle energy
regression

• enhancing signal/background discrimination

17

• Exploration of ML algorithms in low-latency, real-time
processing has just begun!

• How can we improve the trigger selection with ML?

• What can we do in ~ μs with an FPGA?

• Many successes in HEP:
identification of b-quark jets,
Higgs candidates, particle energy
regression, analysis selections, ….

• Several BDTs involved in the analysis of Higgs boson decay to
two photons using high-level variables

• e.g. particle mass, η, isolation

• To separate signal photons from background (photons from jets)

• Choosing the most likely vertex for the photons (they are
neutral, so no tracking)

• A diphoton quality BDT (separating signal like 𝛾 𝛾 events from
background)

• Used to increase the purity of the selected diphoton dataset

• Increase in sensitivity due to ML equivalent to having 50% more
data (and no ML)

BDTs for Higgs

arXiv:1804.02716v2

18

arXiv:1804.02716v2

Neutrino Detector Reconstruction

arxiv:1611.05531

19

• From MicroBooNE, Liquid Argon time-
projection chamber (LArTPC) neutrino
experiment

• Using a CNN to identify neutrino interactions
using a CNN

• e.g. simulated neutrino interaction yielding 1 μ,
3 p, 2 π. Background from cosmic data

• Yellow box is ‘truth’ box containing all charge
deposits from simulated interactions

• Red is bounding box predicted by CNN

https://arxiv.org/abs/1611.05531

• Big successes in HEP from ML for jet ID, example: DeepJet from CMS

• 1x1 CNN layers for ‘feature engineering’ (combining variables of single particles)

• LSTM recurrent networks iterate over particles sequentially

• Finally Dense layers combine features learned from the previous steps and the
global variables

Jet Tagging

CMS-DP-2018-058
20

http://cds.cern.ch/record/2646773?ln=en

• Jet tagging is an area of HEP rich in ML: given the final state observables, what type of particle initiated
the jet?

• How to represent the jet? Lots of approaches have been tried, relating to the different NN architectures

• High-level observables reconstructed with classical means -> fed into MLP

• Make images from individual particles by applying a grid -> Convolutional NN

• Make lists of particles (often pT ordered) -> Recurrent NN or Transformer

• Represent particles as a graph (point cloud with connections) -> Graph NN

Jet Tagging

arXiv:2202.03772

21

https://arxiv.org/pdf/2202.03772.pdf

CMS Level 1 Trigger Endcap Muon

22

• BDT to fit the muon momentum from hits in
the muon stations

• Complicated geometry and magnetic field
makes an ML solution useful

• Deployed using a ‘large LUT’ implemented in
DDR on a mezzanine card to the FPGA

• BDT is evaluated for every possible input, with
the output written at that position in the LUT

LHCb, Bonsai BDT
• In LHCb, Bonsai BDT has been used since the

beginning of LHC data taking in their online
software event selection

• Bonsai BDT is a technique to compress BDTs
into a binned parameter space for faster
execution

• Was used in the main selection path for most
LHCb analyses

23

ECON-T ASIC for CMS HGCal

• Compress data to be sent to trigger FPGAs with an AutoEncoder, decode off detector

On detector Off detector (trigger)lpGBT

https://doi.org/10.1109/
TNS.2021.3087100

24

https://doi.org/10.1109/TNS.2021.3087100
https://doi.org/10.1109/TNS.2021.3087100

• Neural Net encoder IP block created for ECON-T ASIC with Catapult HLS (Mentor/Siemens) and
hls4ml (more later)

• NN architecture is fixed, weights can be reprogrammed (e.g. after NN retraining)

• ECON-T also includes non-ML baseline compression algorithms

• Decoder block would run in trigger FPGAs

• Device manufactured and undergoing testing

ECON-T ASIC for CMS HGCal

25

• Using an Autoencoder for anomaly detection

• Network has a ‘bottleneck’ that learns an abstract representation of the data

• After bottleneck, decoder network tries to reproduce the input image

• For anomalous input, the recreated image is not similar to the original input, and flagged

• Applied to CMS muon drift tube system, able to identify failures not spotted by previous, rule
based system

Data Quality Monitoring

26

arXiv:1808.00911

https://arxiv.org/abs/1808.00911

• From ATLAS, predicting the transfer time of files between sites

• One metric in determining the network-aware scheduling of GRID jobs and file storage

• Uses a Long Short Term Memory (LSTM)

• Inputs: source, destination, activity, bytes, start timestamp, and end timestamp

ML For Networking

doi :10.1088/1742-6596/898/6/062009
27

ML with GPUs
28

• ML algorithms highly parallelisable

• NN forward pass just matrix-vector products and non-linear functions on vectors

• Can be accelerated with appropriate hardware:

• CPUs with vector/SIMD units (e.g. AVX - get packages from Intel, for example)

• GPU, FPGA, TPU (T = Tensor), IPU (I = Intelligence)

• Need also good software and compilers to utilise hardware effectively

• ML is also big business, so lots of high performance solutions out there (incl open source)

• Often for Trigger and DAQ we can ‘train offline’, ‘predict online’

• Different goals and hardware for each phase

• May need to (re)optimize ML models for online performance

ML for TDAQ Overview

29

GPUs for ML

30

• GPUs are very powerful for machine learning

• Many more parallel arithmetic ops than a CPU

• Very high memory bandwidth

• Training / predicting ML models on large datasets doesn’t involve much branching/control

• Plus the GPU can be useful for other things

• Usually, using GPUs for ML, you don’t write CUDA code yourself but use a higher level framework
like Tensorflow (or higher still with Keras, PyTorch)

• Extremely easy to execute on a GPU with these environments

• Exception might be when doing something extremely custom

• Biggest gains for GPUs are seen in training, but they also outcompute CPUs in inference

• But remember you have to get the data to the device

• Here, running inference on K80 GPUs, measuring images / second (throughput)

• mlperf.org has nice benchmarking of different hardware (not only GPUs) running on different
models

GPUs for ML

From Microsoft Azure

31

http://mlperf.org
https://azure.microsoft.com/en-us/blog/gpus-vs-cpus-for-deployment-of-deep-learning-models/

• “Batching” is a common technique for better hardware utilisation

• Relevant both at training and inference time

• Send several data samples to the GPU in one batch to maximise use
of memory bandwidth and compute

• Is the constraint latency or throughput?

• If strictly latency: low batch size

• If throughput: high batch size

• Both: batch size where throughput saturates

GPUs for ML - batching
arXiv:1803.09492

• Plot: throughput vs latency at different batch sizes for
Inception V2 (large computer vision CNN)

• On different GPUs and different precisions

Puget Systems 32

https://arxiv.org/pdf/1803.09492.pdf
https://www.pugetsystems.com/labs/hpc/GPU-Memory-Size-and-Deep-Learning-Performance-batch-size-12GB-vs-32GB----1080Ti-vs-Titan-V-vs-GV100-1146/

• Whether or not you can profit from batching depends also on:

• Is the main constraint on throughput or latency? (Or both?)

• The data source: do data arrive at fixed intervals (bottom right image), or stochastically
(bottom left)?

• Can you afford to wait to accumulate several samples before sending them to the GPU?

GPUs for ML - batching

NVIDIA

33

https://developer.nvidia.com/blog/nvidia-mlperf-v05-ai-inference/

• Many GPUs support Int8, float16, bfloat16
precision with many more OPS than float32

• Post Training Quantization (PTQ) -
train with FP32 then scale & round to
lower precision

• Quantization Aware Training (QAT) -
train with lower precision

• TensorRT (NVIDIA GPU),

• TensorFlow Lite (Google),

• torch.quantization (PyTorch)

• Choice of precision depends on target
hardware and requirements

Quantization

Float 32 (Titan V)

Float 16 (Titan V)

34

In
fe

re
nc

e
La

te
nc

y
[m

s]

Throughput [fps]

Inception V2

• A Neural Network often contains many redundant connections

• Pruning = remove some connections from final model

• Can reduce the model size (memory footprint)

• Some processors can accelerate sparse networks

• Basically - don’t do the multiply by 0 computations

• Different methods:

• Regularisation (penalise low value weights, then make them 0)

• Target sparsity, e.g. sparsity ramp up with TFMOT

• Structured pruning - remove continuous blocks of weights;

• Filter pruning - entire filters of CNN

• Applies also to BDTs (λ, ⍺ in xgboost)

• Can be coupled with Quantisation Aware Training

Pruning / Sparsity

NVIDIA Ampere

35

Tensorflow
blog [3]

https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/

• Many GPUs / Many clients

• NVIDIA, open source

• Handles dynamic batching
depending on requests to
optimize latency/throughput
performance

• Could be used for varying

• event rate,

• number of inferences /
event

Deployment: Triton inference server

36

• There are some processors out there specifically designed for Machine Learning / AI

• e.g. Tensor Processing Unit (TPU) from Google, Intelligence Processing Unit (IPU) from Graphcore

• Devices aiming at low power embedded

• Internet of Things, Smartphones

• Xilinx Versal ACAP for FPGAs with embedded Vector units, Vector/NN units in CPUs

• Many different things out there, each targeting a specific optimisation:

• Best overall throughput

• Lowest latency

• Lowest power / smallest footprint

• Choose appropriate device for your task

ML Specific Processors

A3D3

37

https://a3d3.ai/about.html

ML inference with FPGAs
38

• Field Programmable Gate Arrays = reprogrammable integrated circuits

• Contain many different building blocks (resources) which are connected together as desired

• Extremely parallel processors

• Computing in space as well as time

• Utilised by most low level HEP triggers

What are FPGAs?

FPGA diagram

Machine learning algorithms are ubiquitous in HEP

FPGA usage broad across HEP experiments
Centered on DAQ and trigger development

Some early adaptions of ML techniques in trigger [1]

FPGA development becoming more accessible

High Level Synthesis, OpenCL

FPGA interest in industry is growing
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA
“programmable hardware”

DSPs (multiply-accumulate, etc.)
Flip Flops (registers/distributed memory)

LUTs (logic)
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/

LUTs - generic logic
DSPs - for multiplication
BRAM - for local, high-throughput storage 39

40

FPGAs in CMS
Possible uses of FPGAs:

Stream processor / real-time : fixed latency L1 trigger
Accelerators

• Primarily use custom hardware

• Very high IO bandwidth / optical inputs

• Usually commercial
hardware

• Mostly PCIe form-factor

Bitware: VectorPath S7t-VG6

Micron: SB852

Xilinx: Alveo U250

CMS/UK: Serenity
CMS/US: CTP7

CMS/UK: MP7

Form factor: VME / MTCA / ATCA

TUL: PYNQ

Embedded / low power

41

Why FPGA accelerators?

Workloads:

• ML inference

• Video transcoding

• Database search / analytics

• Compression / decompression

• Encryption

• Computational storage / ‘smart’ SSD

• Low latency FINTECH

FPGA = high parallelism (like GPUs) + reprogrammable custom architectures

-> Typically (but not always) lower latency & improved power efficiency w.r.t GPU solution

Key benefit is bandwidth into device / in-network processing

Requirements for successful acceleration:

• Sequential or stream-based processing with
pre-determined data dependencies and
deterministic execution

• Limited random-accesses

• Host-accelerator transfer overhead <<
processing time (large blocks of data preferred)

Note: will be covering primarily Xilinx devices. Intel devices also exist.

Algorithms running on FPGAS
• LHC Run 2 (2015-2018)

• Clustering

• Pattern Recognition

• Energy Sums

• Zero Suppression

• Boosted Decision Trees

42

• LHC Run 4 dev. 2029-

• Hough Transform

• Convolutional Neural Networks

• ?????

• LHC Run 3 (2022-2025)

• Multi Layer Perceptrons: DNNs

• Kalman Filters

• FPGAs are highly suited to ML tasks - massive parallelism, high
memory bandwidth

• Several big providers using FPGAs for ML in their datacentres

• e.g. Microsoft with Bing and Azure, FPGA availability on Amazon
Web Services

• Main way to execute ML on FPGAs:

• Vendor libraries with fixed silicon designs and an instruction set
- Deep Learning Processor Unit (DPU) for Xilinx Vitis AI, Deep
Learning Acceleration (DLA) Suite for Intel

• Can outperform GPUs mostly at maintaining high-throughput
with low latency (< 2ms)

• Able to achieve best ‘performance per Watt’

• Can benefit from in-network processing with FPGA’s high speed
connectivity

FPGAs for ML

Xilinx: xDNN 43

https://www.xilinx.com/support/documentation/white_papers/wp504-accel-dnns.pdf

• Tools like hls4ml (more later) and conifer bring ML into FPGAs with sub-microsecond latency

• Example: identifying fake tracks from CMS Level 1 Track Finder (Phase 2 Upgrade)

• Fake tracks are identified in simulation as those not associated to a simulated particle

• Often from combinatorics (200 pileup scenario), they harm trigger performance later

• A BDT with 60 trees and depth of 3 finds fakes better than simple cuts

• conifer library maps BDT onto FPGA logic

• In this case 33 ns latency and < 1% resources (VU9P)

• Many algorithms in development for Phase 2

• Improving object reconstruction (as here)

• Improving event selection of difficult signatures

ML in L1T FPGAs

44

https://fastmachinelearning.org/hls4ml/
https://github.com/thesps/conifer

• FPGA programming has challenges

• Requires a lot of expert engineering knowledge, long
development cycles

• New design tools from the FPGA companies - ‘High Level
Synthesis’ - make it a lot easier

• Enabling more physicists to contribute

• Enabling experienced FPGA designers to complete
designs faster

• In HEP this is enabling us to bring more of the offline
algorithms into the Level 1 Trigger

• Kalman Filter for charged particle track
reconstruction

• Machine Learning…

High Level Synthesis entity add is
port(
 clk : in std_logic;
 a : in signed(31 downto 0);
 b : in signed(31 downto 0);
 c : out signed(31 downto 0)
)
end add;

architecture rtl of add is
 if rising_edge(clk) then
 c <= a + b;
 end if;
end rtl;

int add (int a, int b){
 return a + b;
}

45

• With a Hardware Description Language (HDL), you write a description of a circuit

• With HLS, you write a description of your algorithm

• The compiler decides the circuit

• Controlling how the compiler maps your algorithm to a circuit requires careful code design

• And use of #pragma directives to guide the compiler

High Level Synthesis

#define N 16
typedef ap_fixed<16,8> T;

void myAlgo(T a[N], T b[N], T c[N]){
 #pragma HLS array_partition variable=a,b,c complete

 for(int i=0; i<N; i++){
 #pragma HLS unroll

 c[i] = a[i] * b[i];
…

Use registers

Execute loop
iterations in

parallel
46

47

• Open-source Python API & command line tool that
translates trained NNs to synthesizable FPGA
firmware [1, 5]

Model conversion, optimisation,
profiling & tuning

Xilinx (AMD) FPGAs, Intel
FPGAs & CPUs

Quantisation and pruning:
QKeras, AutoQ (Keras)

Brevitas (PyTorch)

• Implementations of common ingredients - layer types, activation functions

• Novel ingredients for fast, efficient inference - binary/ternary NNs, network optimisations

48

• Excels at very low latency applications

• Weights stored on-chip -> very fast access times, limited capacity

• Can tune latency vs resource utilisation with per-layer ‘reuse factor’

• Capability to utilise extremely heterogeneous quantisation techniques

• Relies on Xilinx HLS (tool that produces FPGA code from C++), blackbox that can produce
non-optimal results

• Requires a bit more knowledge of FPGA design than some other solutions, but still
accessible to non-Verilog/VHDL experts

• Work on support for new backends & off-chip weights ongoing

• Ideal for L1-trigger applications: expected to be widely used for CMS Phase II trigger

• Step 1: pip install hls4ml

• hls4ml is Python based, has Python API to:

• convert NNs

• write HLS projects

• run emulation (execute the ap_fixed C++)

• run synthesis (Vivado HLS)

• Make accelerator bitfiles for some cards

• There is also a command line tool

• Lots of user configuration is possible

• Change data types (bitwidths) heterogeneously

• Turn performance handles for each layer -

• ReuseFactor, Strategy, parallel/streaming IO

FROM HLS4ML IMPORT …

IMPORT TENSORFLOW AS TF

TRAIN OR LOAD A MODEL

MODEL = … # E.G. TF.KERAS.MODELS.LOAD_MODEL(…)

MAKE A CONFIG TEMPLATE

CFG = CONFIG_FROM_KERAS_MODEL(MODEL,
GRANULARITY=‘NAME’)

TUNE THE CONFIG - EACH LAYER INDEPENDENT

CFG[‘LAYERNAME’][‘LAYER2’][‘REUSEFACTOR’] = 4

DO THE CONVERSION

HMODEL = CONVERT_FROM_KERAS_MODEL(MODEL, CFG)

WRITE AND COMPILE THE HLS

HMODEL.COMPILE()

RUN BIT ACCURATE EMULATION

Y_TF = MODEL.PREDICT(X)

Y_HLS = HMODEL.PREDICT(X)

DO SOME VALIDATION

NP.TESTING.ASSERT_ALLCLOSE(Y_TF, Y_HLS)

RUN HLS SYNTHESIS

HMODEL.BUILD()

49

• MLCommons recently added ‘Tiny’ category to MLPerf benchmark (link)

• hls4ml submission targeted pynq-z2

• Fully on-chip hls4ml implementation is efficient for low power inference

MLPerf™ Tiny Inference Benchmark

Benchmark CIFAR-10 ToyADMOS

Team Device Accuracy Latency (ms) Power (W)* AUC Latency (ms) Power (W)*

hls4ml Pynq-z2 77% 7.9 ~ 1.5 0.82 0.096 ~ 1.5

Latent AI Raspberry Pi
4 85% 1.07 ~ 4 - 5 0.85 0.17 ~ 4 - 5

Harvard Nucleo-
L4R5ZI 85% 704 0.85 10.4

Peng Cheng
Lab

PCL
Scepu02 85% 1239.16 0.85 13.65

50

https://mlcommons.org/en/inference-tiny-07/

• Using regular TensorFlow Keras or PyTorch, you train with floating point

• We like to avoid floating point in FPGAs - much more resources & latency than fixed point

• You can do post-training quantisation (PTQ) - represent the float values with some fixed point

Quantization

51

• With QAT, you constrain weights/biases/activations to fewer values (like fixed point)

• Superior to PTQ for lower bitwidths - can go all the way down to 1 bit (representing ±1)

• Often using ‘Straight Through Estimator’ for back propagation

Quantization Aware Training (QAT)

arXiv:2103.13630
52

https://arxiv.org/pdf/2103.13630.pdf

• QAT impact is significant - here w/QKeras & hls4ml

• QAT maintains same accuracy until 6 bits, then drops slightly
(not that much)

• PTQ accuracy falls very fast reducing bitwidth

• Quantization can be heterogeneous

• Different choices for weights vs activations, and for different
layers

• Wider “more expressive” activations can help

• For autoencoders: higher precision at the bottleneck layers;

• For regression: higher precision at the end (more continuous,
less discrete output)

• AutoQ tool for training NNs with hardware-cost constraints [6]

Quantization Aware Training

53

Representing Quantized NNs

54

• Lots of tools like Tensorflow, PyTorch, TensorRT have support for low precision
(including QAT)

• But they are typically restricted to common CPU/GPU types (float16, int8, int4, int1)

• For dataflow (layer unrolled) FPGA inference, we would like more flexibility

• Collab w/ Xilinx Research Labs: HLS4ML team develop QONNX [7]

• Extend QONNX with Quant node

• Flexible number of bits, zero-point, and per-channel scale factors

• onnxruntime execution thanks to FINN (Xilinx RL NNs)

• QONNX is exported by Brevitas, others are working on it, and we develop a
QKeras to QONNX conversion

• github.com/fastmachinelearning/qonnx

https://github.com/fastmachinelearning/qonnx

Binary / Ternary neural networks

55

intel.com [4]

• DSP multipliers often limiting resource

• Can often go down to 1- or 2-bit weights with
limited performance loss

• Can have very efficient computation in the
FPGA (and CPU/GPU/smartphone)

• Binarize weights but not gradients during
backpropagation

• Use Binary Tanh, Ternary Tanh or ReLU
activation

• BNN: arxiv.1602.02830

• TNN: arxiv.1605.04711

http://intel.com

• DSPs often limiting FPGA resource for NNs

• Encode ‘-1’ as ‘0’

• Multiplication become XNOR, sum becomes bitcount

BNN - Dense Layer

A B A*B
-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

A B A==B
0 0 1
0 1 0
1 0 0
1 1 1

A A’

-1 0

1 1

Original: 16-bit weights

Binarized: 1-bit weights

56

Xn = gn(Wn,n−1xn−1 + bn)

Xn = gn(Wn,n−1xn−1)

Activation function:
precomputed,

stored in BRAMs

Multiplication:
DSPs

Bias addition:
LUTs/FFs

Activation function:
simple binary

function

XNOR:
LUTs/FFs

Jet tagging

57

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

 top other quark

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

CASE STUDY: JET SUBSTRUCTURE10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

Z W gluon

• HLS4ml tutorial example [2]

• Tagging jets (5 classes, 16 input variables)

• 3 fully connected layers

• 16 expert-level input variables, computed with FastJet:

• known to have high discrimination power from offline data analyses and published studies

Jet tagging
• Trained (on GPU) the five output multi-classifier on a sample of ~ 1M

events with two boosted WW/ZZ/tt/qq/gg anti-kT jets

58

energy correlation functions

• Fully connected neural network with 16 expert-level inputs:

• Relu activation function for intermediate layers

• Softmax activation function for output layer

Jet tagging

16 inputs

64 nodes
activation: ReLU

32 nodes
activation: ReLU

32 nodes
activation: ReLU

5 outputs
activation: SoftMax

AUC = AREA UNDER ROC CURVE

(100% IS PERFECT, 20% IS RANDOM)

better
59

Jet tagging w/ QAT & Pruning

Xilinx VU9P Latency DSP LUT

Keras 16b 50 ns 1890 (15%) 5%

QKeras 6b 40 ns 22 (~0%) 1%

60

A. Keras floating point training, 16b inference

B. QKeras with 6 bits for weights, biases,
activations & 75% sparsity target with TFMOT

Minimal code changes to go A to B

Better

• Design an architecture to perform the same jet classification task but now with binary weights
and activations - n neutrons 7x per layer

• Performed hyperparameter optimization to find most performant model within some
constraints

BNN - Jet Classification

Original: 16-bit weights

Average accuracy: 0.75

Binarized: 1-bit weights

Average accuracy: 0.72
61

• Stream processor / accelerator hybrid

• What does L1 accept miss?

• Can we acquire L1 trigger data at full bunch crossing rate

• subset of detector information, limited resolution

• Allows for analysis of certain topologies at full rate

• semi real-time analysis and/or

• storing of tiny event record

• Demonstrated for first time at end of 2018

• Upgraded w/ new boards in 2021 - validated with LHC test beams

• For LHC Run 3 (2022) - prompt & displaced muons, jets, electrons/photons, taus and global
trigger outputs included

62

L1 Scouting

CMS + L1 Scouting

Level 1 Trigger

Front End
Pipelines

Underground ‘data centre’

 / service cavern

On-detector (in experimental cavern)

~3 𝝁s

~ 1.2 Tb/s

~ 7 Tb/s

~ 500 Tb/s

100 kHz Trigger

Surface datacenter

High Level Trigger
~35,000 Cores

Permanent
Storage

Readout
Buffers

~ 24 Gb/s

FPGAs / ASICsCPUs

Coarse-Grained
Data

~3 𝝁s

~ 1.2 Tb/s

~ 0.5 s

63

L1 Scouting

~ 50 Gb/s

~ 1 Gb/s

L1 Scouting with SB-852
• Micron SB-852 for optical input ->

DMA to PC

• Perform NN inference with Micron
DLA after firmware ZS

 Dell ServerSB-852 (VU9P)

SW Zero
Suppression

1/8PCIe Gen 3

~800 MB/s

User logic/
Firmware Zero
Suppression

1/208 x 10 Gb/s
optical links

L1
 tr

ig
ge

r b
oa

rd
s

10 G Eth.

~100 MB/s

10/40G Eth
switch

Supports up to
200GB/s IO over

QSFPs

Pico framework

M
D

LA

64

Why ML for L1 scouting?

ϕ′￼reco η′￼reco p′￼T reco

Dense

BN

Relu

Dense

BN

Relu

Dense

BN

Relu

• Use of classical (FF-DNN) neural networks to ‘recalibrate’ L1
information to improve their utility for an online analysis

• Inputs - L1 objects e.g GMT muons:

• Target - Offline fully reconstructed objects

Dense

BN

Relu

ϕ η pT Q q (quality)

128 nodes

128 nodes

128 nodes

128 nodes

0.6− 0.4− 0.2− 0 0.2 0.4 0.6
φ∆

0

2000

4000

6000

8000

Ev
en

ts Global Muon Trigger
Neural Network

0.6− 0.4− 0.2− 0 0.2 0.4 0.6

T
 / p

T
 p∆

0

1500

3000

4500

6000

Ev
en

ts Global Muon Trigger
Neural Network

CMS Preliminary (2017/2018 13 TeV) CMS Preliminary (2017/2018 13 TeV)
3 < pμ GMT

T < 45 GeV3 < pμ GMT
T < 45 GeV

Particle angular position perpendicular to beam Particle momentum in direction transverse to beam 65

Muon recalibration on SB-852
N DLA clusters Inference rate Average latency / muon

inference

4 cluster 5.6 MHz 171 ns

2 cluster 2.8 MHz 342 ns

1 cluster 1.4 MHz 683 ns

ϕ η pT

ϕ′￼reco η′￼reco p′￼T reco

Dense

BN

Relu

Dense

BN

Relu

Dense

BN

Relu

Q

Dense

BN

Relu

q

• 4 clusters maximum in VU9P FPGA

• Majority of latency from data/weights transfer RAM/FPGA,
batching implemented to remove this bottleneck (batch size 1280)

(quality)

128 nodes

128 nodes

128 nodes

128 nodes

Precision |hw - Keras sw| Frac. < 1% dif

Model w/ integer inputs, no batch norm 99%
66

Fake muon pair classifier
• Network consists of 8 recalibration branches & 4 classification branches

• Trained/tested with Run 3 Zero-bias data

Dense

BN

Relu

Dense

BN

Relu

Dense

BN

Sigmoid

Dense

BN

Relu

28 nodes

12 nodes

20 nodes

1 nodes

ϕ η pT q

Class

Qual

ϕ η pT qQual

Recalibration Classification
67

GTY input logic

Gap protect

Aligner

Zero Suppression

Fifo Filler

DMA engine

1 MB data FIFO

1 MB packet FIFO

DistrRAM FIFO

DistrRAM FIFO

Trigger Input
8 MP7 links 10 Gb/s

250 MHz
input
clock

250 MHz
AXI/DMA
clock

AXI
BRAM
FIFOs

GTY input logic

Gap protect

Aligner

Zero Suppression

HBM write/read

TCP/IP logic

250 MHz
input
clock

250 MHz
HBM
clock

HBM
Memory

Orbit Header

Payload

Orbit Header

Payload
...

Memory Blocks maker

0x0000
0x0020
0x0040
0x0060
...

... 250 MHz
TCP/IP
clock

Trigger Input
8 MP7 links 10 Gb/s

NN for online recalibration

VCU128 - NN w/
• Integrated NN for muon recalibration generated w/ HLS4ML

• Q6.12 precision, pruning factor 0.5

• 2 NN each process 4 muons / BX

• Latency 100 ns FIFO latency, can accept 2 muons / clock≲

CERN openlab Report x/2022

(a) A subfigure
(b) A subfigure (c) A subfigure

Figure 11: A figure with three subfigures

3.2 Resource Utilizations228

Resource utilizations and timings of all three approaches have been compared. Neural network models229

used LUT, DSP and FF and the main limiting factor was DSP. Different configurations such as DSP230

reuse factor or target clock frequency have also been tested in this step.231

3.2.1 8 Neural Networks232

The first approach was having 8 neural networks, one for each muon (Figure 5). It was the easiest and233

most direct forward method since there was no need to store input data. For test purposes, a Keras234

neural network with 32 neurons and <18,6> precision have been used. To fit the model, DSP reuse235

factor is increased to 4 and the target clock frequency was 4ns. It took 13h 15min to synthesize and236

resource utilization percentages are given in Figure 12. It gave really bad timing violations with 2.286237

worst negative slack. This violation shows that although simulations work correctly, this approach was238

not applicable in hardware.

Figure 12: ??? [1]
239

3.2.2 4 Neural Networks240

The second approach was having 4 neural networks, 2 muons for each (Figure 5). It was slightly241

more challenging to implement since it required an additional buffer to store input data. For test242

purposes, a much smaller model than the first one, a QKeras neural network with 32 neurons and243

<18,6> precision have been used. DSP reuse factor is reduced to 2 and target clock frequency was244

2ns to get rid of timing violations. It took only 1h 20min to route and resource utilization percentages245

BOOSTING ONLINE RECALIBRATION OF PHYSICS OBJECTS FOR THE 40 MHZ SCOUTING SYSTEM AT CMS 13

CERN openlab Report x/2022

are given in Figure 13. Additionally, all time violations related to neural networks were eliminated.246

Although results were significantly better than the first approach, latency was high (17 cycles) and it247

was possible to optimize even more.

Figure 13: ??? [1]
248

3.2.3 2 Neural Networks249

The final approach was having 2 neural networks, 4 muons for each (Figure 5). Each bunch crossing250

consist of 6 frames and all muons in that bunch crossing must be processed in 6 clock cycles. With251

this approach, it is possible to process all in 4 cycles (1 set in each cycle). However, with only one252

neural network, it would take 8 cycles. Therefore, further optimization with current data frequency253

was not possible. For test purposes, a QKeras neural network with 32 neurons and <18,6> precision254

have been used. Since increasing the DSP reuse increases the time interval between 2 input, it was not255

possible to use it in this approach. Target clock was 3ns for reducing latency but also not getting timing256

violations. It took 1h 5min to synthesize and resource utilization percentages are given in Figure 14.257

This method didn’t give any time violations and was the most optimal one in every aspect.

Figure 14: ??? [1]
258

3.3 Hardware Test Results259

After synthesizing the firmware, it has also been tested with the actual hardware setup (Figure 5).260

L1 uGMT test muons are given to the gap cleaner from the beginning and final data have been261

BOOSTING ONLINE RECALIBRATION OF PHYSICS OBJECTS FOR THE 40 MHZ SCOUTING SYSTEM AT CMS 14

VU37P
Dense

Relu

32 nodes

32 nodes

32 nodes

ϕ′￼ η′￼ p′￼T

ϕ η pT q

Dense

Relu

32 nodes

Dense

Relu

32 nodes

68

In
pu

t ∈
 ℝ

56

Dense ∈ ℝ32 Dense ∈ ℝ16 Latent space ∈ ℝ3 Dense ∈ ℝ16 Dense ∈ ℝ32 Dense ∈ ℝ56

ENCODER DECODER

69

Xilinx
VU9P Latency (ns) Clock freq.

(MHz) DSPs (%) LUTs (%) Flip Flops (%)

HLS4ML
(8bit)* 48 200 20 8 0.4

MDLA 625 250 Four clusters, full chip used

• Train on Standard Model ‘QCD’ background

• Inputs: fixed size arrays of up to 10 jets, 4
muons, 4 electrons & Missing energy

• (each with 3 parameters)

• Test with simulated BSM events

• e.g new massive vector bosons, unusual
Higgs decays

* Resources HLS estimates only.

Auto-encoder for anomaly detection

See: T. Arrestad et al, LHC physics dataset for unsupervised New Physics detection at 40 MHz, arXiv:2107.02157

Summary

70

• ML is a rich and exciting field of research, constantly inventing new, more powerful techniques

• At the same time, device developers are supporting the growth of ML with faster, more parallel
processors, and devices designed specifically for ML

• Deploying ML into the realtime processing for Trigger and DAQ is becoming increasingly possible
and relevant

Thomas James (CERN): t.j@cern.ch

Special thanks to Sioni Summers (CERN) for last year’s slides

[1] https://fastmachinelearning.org/hls4ml

[2] https://github.com/fastmachinelearning/hls4ml-tutorial

[3] https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html

[4] https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic

[5] https://arxiv.org/abs/1804.06913

[6] https://www.nature.com/articles/s42256-021-00356-5

[7] github.com/fastmachinelearning/qonnx

[8] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-
eli5-way-3bd2b1164a53

[9] https://www.eidosmedia.com/blog/technology/machine-learning-size-isn-t-everything

Links and additional reading

71

https://fastmachinelearning.org/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic
https://arxiv.org/abs/1804.06913
https://www.nature.com/articles/s42256-021-00356-5
http://github.com/fastmachinelearning/qonnx
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://www.eidosmedia.com/blog/technology/machine-learning-size-isn-t-everything

72

CMS 2015 - 2023
~20,000 FPGAs
capture data

Only tiny fraction
reaches CPU

Level 1 Trigger

Front End
Pipelines

Underground service cavern On-detector (in experimental cavern)

~3 𝝁s

~ 1.2 Tb/s

~ 7 Tb/s
~ 500 Tb/s

100 kHz Trigger

Surface datacenter

High Level Trigger
~25,000 Cores

Permanent
Storage

Readout
Buffers

~24 Gb/s

FPGAsCPUs

Coarse-Grained
Data

~3 𝝁s

~ 1.2 Tb/s

~ 0.5 s

