

LabVIEW ISOTDAQ 2023

Gary Boorman
19th June 2023

Agenda

- Introduction to LabVIEW
- Application Development
- LabVIEW Integration for Hardware and Software
- LabVIEW for Accelerators and Detectors
- Summary

LabVIEW

What is it?

What is LabVIEW?

LabVIEW is a graphical programming environment used by scientists and engineers to develop automated research, validation and test systems

Background

NI was started by a couple of physicists....

NI created hardware in 1970s, then added an easy way to program it in 1986 – LabVIEW

+

Measurement challenges

- Conflicting programming approaches
- Disparate drivers
- Timing, triggering, and synchronization
- Fixed soft/hardware
- Changing requirements

LiDAR

Heterogeneous systems

+

HW and SW Integration

- Integration is the key to efficiently creating a control and measurement system.
- LabVIEW effortlessly joins together hardware and software.

DAQ Comparison

Software Used for Data Acquisition and Instrument Control

OPTIONS	C++/C#/JS/VB	LabVIEW	MATLAB	DASYLab
Ease of programming (novice)	Difficult	Easy	Medium	Easy
Programming Community size	Very large	Large	Large	Medium
Complex Applications	Yes	Yes	No	No
Built-in DAQ Support	No	Yes	Some	Yes
Built-in Analysis	No	Yes	Yes	Yes

NI Modular Instruments

Compact DAQ

Compact RIO

Application

Creating Code

LabVIEW Environment

Together the
Front Panel and
the Block
Diagram create
a VI – a virtual
instrument

Application development

Program as you think

+

Graphical interface

Dataflow I

Data driven execution

Intrinsic Parallelism

Dataflow II

- Data driven execution
- Multi-threaded (no explicit commands required, just careful code design)

Intrinsic Parallelism

Comparison with text

```
for (i = 0; i < 10; i++)
{
    /* loop body */
}</pre>
```

```
for (i = 0; i < 10; i++)
{
  if(check(i)) break;
}</pre>
```


Comparison with text

```
if condition1 then
    -- statements;
elseif condition2 then
    -- more statements
elseif condition3 then
    -- more statements;
else
    -- other statements;
end if
```

```
# "condition1"

/ "condition1"

/ "condition2"

"condition3"

Default
```

```
switch (n) {
  case 5:
    printf("Small number.");
    break;
  case 100:
    printf("Large number.");
    break;
default:
    printf("Outside range");
    break;
}
```


LabVIEW OOP

- LabVIEW has object-oriented capabilities encapsulation and inheritance
- But BEWARE
 - LabVIEW is a by-value language, including its objects
 - Most other OO environments use by-reference objects
 - All data is private
 - Explicit accessor methods must be used to access the data
- Methods are public by default but can be made private (called by class's methods only) or protected (called by child classes too)
- LabVIEW objects are supported on Desktop, RT and FPGA
- Objects can be by-reference if needed

The LabVIEW Compiler

The LabVIEW environment continually parses the block diagram

Valid code ->

Invalid/incomplete code ->

- If code is valid, clicking on the RUN button causes LabVIEW to compile the code and then execute it
- Click on a broken RUN button to get detailed information on the error

Creating Executables

- When developing/debugging LabVIEW code it can be run and tested within the LabVIEW environment
- Once the code is working as desired it can be compiled into an executable (.exe etc), then launched like any other program
 - LabVIEW supports both 32 and 64-bit OS: Windows, Linux and IOS

Creating/Calling DLLs & SOs

- Code can also compile into a windows library (.DLL) or Linux library (.SO)
 - Calls to DLL or SO require knowledge of the function prototypes - LabVIEW will generate the appropriate documentation
- LabVIEW can call functions within other DLL and SO libraries

Integration

Bridging hardware and software

Real-time Systems

- Deterministic code operation
- Create distributed control/test/acquisition systems
- LabVIEW real-time (LabVIEW RT)
 Linux with the real-time patch
 CRIO
 LabVIEW RT
 LabVIEW RT
 LabVIEW RT
 Desktop PC

Compiling LabVIEW for RT Systems

- LabVIEW can run RT code within the development environment
 - Code is executed on the RT system
 - User interface is on the desktop/development system
- Code can usually be run on different RT targets with only minimal changes (file paths, hardware interfaces etc)
- Once the code is running as expected, compile the code into an RT executable
 - Executable can be deployed on RT system
 - Executable starts running once the RT has powered up and loaded its operating system
 - Code is usually designed for running 24/7

LabVIEW FPGA

 LabVIEW first generates VHDL then uses the VIVADO compiler to make a bitfile

+

Compiling LabVIEW for FPGA

- Many LabVIEW functions are available for FPGA
 - Some exceptions:
 - Unbound arrays, queues, strings
 - Double precision numbers (Single is permitted)
 - Non-homogeneous arrays of objects
- Can add pre-existing HDL to LabVIEW FPGA code
- The RT system accesses the FPGA using:
 - Front panel controls and indicators (fairly slow)
 - Direct memory access, DMA (very fast, up to GB/s depending on backplane)
 - Interrupts (latency in order of μs)

FPGA Example

- ICARUS Detector at Fermilab
- Based on PXIe chassis, all programmed with LabVIEW
- Trigger system uses three FPGA cards acquiring data at 40 MS/s
- Triggers are time-stamped using White Rabbit; global trigger sent to readout electronics

LabVIEW and Python

- The Python node
- Call a function from a Python module

LabVIEW in the Physics Lab

LabVIEW at CERN

550 LabVIEW Users

30+ Project clients

CERN LabVIEW
Support
Training

RADE - Rapid Application Development Environment

The LabVIEW solution at CERN to develop expert tools, machine development analysis and test facilities integrated with the CERN control infrastructure. Contains a *middleware* interface for accessing instruments/processes on CERN

network

ISOLDE Suite of Tools

- Consistent code structure for all modules (20+) based on custom template
- Average LabVIEW developers can modify code
- Uses RADE palette for logging, CMW

LabVIEW and Middleware

EPICS

- EPICS support built-in
 - Create EPICS IOCs to run (usually) on Embedded systems
 - Create EPICS Clients on both Embedded and Desktop systems
 - Several third-party solutions that improve performance or the scope of data-types (LNLS, ANL etc)
- Example
 - Vibration monitor at Diamond cRIO system with EPICS interface

Other Applications

LabVIEW Web Module

Compile LabVIEW and run within web-page (Javascript)

View compiled code on any device

• Try www.webvi.io

Custom hardware

CTRP-PMC (CERN)

PMC carrier (Kontron)

Fine delay-FMC (CERN)

FMC carrier (INCAA)

cRIO

White rabbit timing (CERN)

Fibre-based triggering (ANGARA Technology)

Summary

- One development tool multiple platforms: Desktop, RT, FPGA, GPU, Web
- Full integration between hardware and software

The power of LabVIEW Integration

Thank you

Contact me: gary.boorman@angaratech.ch

