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Overview

 The need for tracking information at the Trigger of High
Energy Physics experiments and how to do it fast

« We'll split the problem into “track finding” (define fast a
“road” where a track can be) and “track fitting” (determine
the track characteristics)

 The specific examples from ATLAS (FTK and HTT) will be
discussed in more detail to see all aspects of the problem:

- 1) Track finding with Pattern matching in Associative
Memories , and 2) Track fitting in FPGAs

* You'll see that: if you want to avoid or cannot afford
calculating something time consuming, split the problem
and use pre-calculated patterns and quantities.

- We'll see also examples of other approaches, with
both steps done in FPGAs.

 We'll also see examples beyond High Energy Physics
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A. Introduction
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Looking at many & complex events

every 25ns two proton bunches cross each other
— 3 superp05|t|on of >25 pp coII|S|ons

Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

The Trigger and Data Acquisition system,

* watches 40M such “events” (bunch crossings) / sec
— O(1) billion pp interactions per second

* select online “the most interesting” O(1k) events/sec

(1: 1 Million pp interactions deemed interesting enough to keep)

* and log them for offline use with a resolution of a
~100 Mpixel camera (100M channels: total ~1.5 MB/event)



Trigger at 2 stages:
Levell (L1: fast, no detailed info) &

High Level Trigger (HLT: slower, using detailed info)

* Trigger & DAQ : Select events and get the data from the
detector to the computing center for the first processing.

Permanent
storage

;-l:-_:tf
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Example: Looking for Higgs

« How do we see the Higgs?

- from its children!
E.g.., 4 muons traversing

the detector (red lines here)

ATLAS
B EXPERIMENT
http://atlas.ch

Run: 189280
Event: 143576946
2011-09-14 12:37:11 CEST

E=mc2 = E’=m’c*+p’c’ = F2=m’+p> = m=\(E’-p’)
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The more you know about the events, the easiest
you select the “signal” and reject the “background”

When there is limited time budget (L1 trigger):
typically, decide based only on the muon and
calorimeter systems

But may need information from the inner tracker as
early as possible to make an “educated” decision

and keep as much signal as possible
e.g., 2 “jets” of tracks, which are usually boring,
they could actually be

H->bb “ H>1 T

You will hear on the last day from Francesca Pastore
the way various experiments trigger on the “interesting events”
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Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

e A “track”

traces the charged particle's path as it
moves radially outward and its' position
IS measured in each detector layer

o —

* Find the “track” by

't associating the relevant “hit” cells
from one detection layer to the other

 Measure the track parameters
by fitting these hit positions

2 “real tracks”
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2 “real tracks” + extra hits
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Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

But when you look

e Eemm at this event/picture,
. you just see hits!

You have to find the tracks...

Number of possible tracks do not scale
linearly with number of hits. e.q.:

p p L | | L | |
—>* - 2 Tits Zhits
1 candidate track 4 candidate tracks
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Tracking is a combinatorics problem:
WhICh comblnatlons of h|ts ﬁt track hypothe5|s?

Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

But when you look

e at this event/picture,
e you just see hits!

You have to find the tracks...

— Lots of hit combinations to try

— a huge combinatorics problem

p_>*<_p - becoming worse and worse
as luminosity increases

— a big burden on CPUs
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B. Track finding with Pattern
Matching in Associative Memories

&

track fitting with linearized track
fitting In FPGAS
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* | give solutions adopted for the Fast TracKer (FTK) and the
Hardware Tracking for the Trigger (HTT) projects of ATLAS

B. Track finding with Pattern
Matching in Associative Memories
& track fitting in FPGAS

as an example

FTK: a hardware pre-processor finding tracks and storing them for
further usage by the trigger

HTT was born out of FTK, but is a hardware co-processor who is
ordered by other components to the find tracks for them
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FTK (Fast TracKer):
dedicated hardware helping the HLT,
by doing the tracking before the HLT

Permanent
storage

Fast TracKer (FTK), a
pre-processor for a CPU farm
For each event accepted by L1
(100kHz),

find all its tracks in <100 psec

— X1000 faster than the HLT farm
of PCs
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ATLAS' Fast TracKer (FTK) processes all Level-1 accepted events (100kHz)

Output: all tracks w/ pT>1 GeV available to HLT. Typical FTK latency ~100us,
compared to O(50ms) HLT

*** high-bandwidth connections with detector
*x HW optimized for the s%eciﬁc tasks
m

e ~ Example:
/’—"— R-phi view of Barrel region:

rrrrrr

--------
R
v s

Track crosses 12 detector Iayers +ﬁ

\ *2 SCTlayers”’

Total # of readout channels: 98M
PIXELS: 80 millions + IBL: 12M

SCT: 6 millions
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For L2: SVT trigger at CDF
For HLT: FTK in ATLAS
For HLT & L1 : HTT in ATLAS

Detector design
for triggering

1. Here FPGAS cluster hits and

Data transter get their centroid as the hit
1. Data position.
clustering proper Processing Units
\\2 ” 2a.
. . a. Trac Associative Memories
2. Processing Units (PUs) | | Finding < (pattern matching)
made of these two steps %\
2b. Track

Each PU, takes care of
a given detector slice (“n-¢ tower”) \
S\

In FTK: 64 towers HLT
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1. Input & Data “Formatting”:

cluster adjacent hits,
find the position of each cluster,

forward them to the Processing Unit
responsible for this geometrical n-@ region

FPGA replica of pixel matrix

—‘II-— J

-(p towers
N
"RLTE"5 Significant data reduction
— by using hereafter only the

¢ direction -->

n direction -->

ISOTDAQ2023, Istanbul, 21/6/2023

position of each cluster

(in the example: from now on,
instead of working with information
from 14 cells, we work with
information from 4 clusters)

/
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Detail: Clustering algorithm how-to

NIM A617:254-257,2010

FPGA replica of pixel matrix _ IEEE TNS, vol. 61, no.6, pp.3599-3606, 2014
== 7 doi;10,1109/TNS.2014.2364183
SPARTAN-6 s ~
A J CSGIVAABCOBAR I —‘—I_ £> ﬂ N Yy, I
I Load all | lect |
S ) R e I module hits I >elec
B ‘ I | left most
q) .
= ‘ A top most hit )
S )—l—l_‘—ﬁ
propagate I
— " selection I
n direction --> 0w 2L through cluster
1t phase: S S : | | )
> Pixel module: a 328x144 matrix. = :
> Replicate a part of it (8x164) in hw matrix. %’ % Il readout
> Matrix identifies hits in the same “cluster” (= § o I cluster [
adjacent pixels) = ° k | ﬂ
2" phase:
> Hits in cluster analyzed (averaged) to get 2nd pipeline stage v
’Fh.e.hlt position”, usec! in all next steps high level Average out
> Flexibility to choose algorithm! cluster calculator P

analysis
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1. Find low resolution s oads - ~N

track candidates called | ST T

“roads”, SOIVE most Of T |\|\\|i|\\\| I A ||//|/0)/[/| |\|\{\|\|\| T T 11

thecomblnatOrlal \I_I_OI . I\{jl I ILIi/VI - |\4-\|\\)| T Ij

problem. Pattern recognition w/ Associative Memory
Originally:

M. Dell’Orso, L. Ristori, NIM A 278, 436 (1989)

2. Then track fitting (__\ N
iInside the roads. = ' / \\ |
Thanks to 1st | £ S y

step, this is much

. http://www.pi.infn.it/~orso/ftk/IEEECNF2007_2115.pdf
easlier.

Excellent results with linear approximation!
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24.
The coarse pattern matching first

In SVT, FTK and HTT: use 8 layers of the tracker
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The Event

=

=

=

=

The Pattern
Bank

Because the detecto$
has a finite resolution (“bin size”),
many different tracks generate the

" same hit pattern,
So we have a finite number of patterns

ISOTDAQ2023, Istanbul, 21/6/2023

and a finite-size pattern-bank.
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Training: simulated tracks to find possible

patterns

Pattern #1: ewown 1.
Each possible track

becomes a

Pattern #0: |
2 o ,, /] one coordinate for

Pattern Bank:
PattO 11 12 14 16

Pattl 06 06 07 07

Patt2 15 17 18 20 2

Pattern #2: All patterns are stored in a
“pattern bank”
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Coarse track finding = pattern matching: does
your event contain any of these patterns?

3.

Compare the hits

In your event with

the stored
patterns

Pattern Bank:

Patt0 11 12 14 15
Pattl 06 06 07 07
Patt2 15 17 18 20

y

-

m layer O layer 1 layer 2 layar 3

> g 2 3 1

L

PR . % J The “event” is a list of hits
= © 7 1 in each detector layer

ISOTDAQ2023, Istanbul, 21/6/2023 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs 27



Compare ALL the hits in each event with
ALL the stored patterns.

4.
After all comparisons
are done, we have

Pattern Bank: the list of matched

PattO 11 12 14 15

Patt 1

Patt2 15 17 18 20

[

0 layer 1 layer 2 layer 3

3 E

DG 7
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How to match data to patterns?

How to do the
Comparison?

Pattern Bank: T7525> Check each of the
Patt0 11 12 14 15 CELT70 N\ 5x3x6X6 = 540

Pattl 06 06 07 07
| Patt2 15 17 18 20

{f.

layer 0O layer 1 layer 2 layer 3
] 2 3 1
11 t G 7
12 10 7 14
15 16 20
22 18 25
28 30

The event
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NIO = number of straight lines crossing the detector layers

n= #bins per Iay)

Np:(m—l)n2

Can convince yourselves about this, with m=4 in the above drawing

m = # of layers

-

|

For a detector with 8 layers, with 1M channels/layer, Np = 7 10% 11}

( Re—bining with 2-channels per bin: n =» n/2 means Np — Ya Np )
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N and search time are critical

patterns

 Need a lot of memory for the patterns:

- OK, can use larger (“coarser”) bins for 1st pattern
matching (will come back to this later).

 But still, you have to match hits with patterns fast:

- Linear search, of the pattern-table (“brute force”) is
the slowest.

- If list of patterns is ordered, can do “binary” search:

* Pick the middle element in the list,

« Compare the data to the pattern to find the good
half of the list,

* pick the middle of the new (halved) list, and so on.
Example: The list to be searched: L=1346 8 9 11. The value to be found: X = 4.

Compare X to 6. X 1s smaller. Repeat with L =1 3 4.
Compare X to 3. X 1s bigger. Repeat with L = 4.
Compare X to 4. They are equal. We're done, we found X.

ISOTDAQ2023, |



Speed is extremely important at
triggering.
Find tracks at ultimate speed
- use “Associative Memories”
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VIS STRUCTURES FOR TRACK FINIM™NG

Maure DELLORSO

Moachar berramenn s Methods @ Fhyucs Besearch AJ7TE [1559) 416 44)

Motk Hollafed, Afotefdim

October 24, 1988

M. Dell’Orso, L. Ristori, NIM A
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Fig. 1. Asecialive memory architocture.
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We discuss the architecture of a device based on the concept of asseciative memory designed to solve the track finding problem,
! typical of high energy physics experiments, in a time span of a few microseconds even for very high multiplicity events. This

“machine” is implemented as a large array of custom VLSI chips. All the chips are equal and ecach of them stores a number of
“patterns”. All the patterns in all the chips are compared in parallel to the data coming from the detector while the detector is being
read out.
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« CAM = a memory that is accessed by its contents, not
its location.

 E.g., while in a RAM we ask:

- what do you have in location xyz?

 In a Content Addressable Memory (CAM) we ask:

- Are there any locations holding the value abc?
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« Binary CAM (simplest):

- uses search words consisting entirely of “1” and “0”

Example:
stored word of = —mmeemmeemmeeee > "10110" (“one pattern”)

It will be matched by the search word: "10110" (“the data”)
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ro Layer 1 Layer2 Layer 3
ONE PATTERN m
[l il
= iy

{6,6, 7,7} patt 1L LL=FF [12 [»{Ff| [14 [=FF| | 150nFF

&

y Y v -

01107 LLOLLL oy o151 (17

|
T
3

=
co
T
3

N
o
?'

FF

sng +ndihO

Patt 3| |IFF -

—{ T}
-—
-—

4 & i i

HIT HIT HIT HIT
LayerO Layerl Layer2 Layer3
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sng +ndihO

Layer O Layer 1 Layer2 Layer 3
ONE PATTERN
% F’uﬂ‘ 0 {6 *? ¥ *T o *T *‘WF.?
| )
{6,6, 7,7} Patt 1L L L=iFF| [12 —-IlF 14 —l-llF 15 FI
i 1111 11111 Il 4
:01101 L0117 o oo o(150afrd (17 |»{rd (18 |={rd [20B=IF
: : ! Py
Patt 3 —=FF — = FF — FF — FF
As soon as data ‘ ' ' )
are present from A A A A
each Layer, they oo odITo HIT HIT3
are put on the bus, aygr aye£ ay§r ayf_r

to be seen
by all stored words
along this bus

A

A

A
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Layer O Layer 1 Layer2 Layer 3
ONE PATTERN
% F’uﬂ‘ 0 R *T worl *T *‘WF.?
| )-
{6,6, 7,7} patt 1L LL=FF [12 [»{Ff| [14 [=FF| | 150nFF
: : i o
1] LI A1 UL =
:01101 L0117 o oo o(150afrd (17 |»{rd (18 |={rd [20B=IF c
: : ! Ly le
Patt 3 —=FF — = FF — FF — FF
As soon as data ‘ ' ' )
are present from A A A A |
each Layer, they HIT HIT T HIT Flags raised
are put on the bus, LO Laye; 3¢ "4 if matching

to be seen
by all stored words
along this bus

ISOTDAQ2023, Istanbul, 21/6/2023
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Layer O Layer 1 Layer2 Layer 3

ONE PATTERN .u\
== | CEEE

)
{6,6,7,7} patt 1 RLLp=FF (12 [»{Ff| |14 [=FF| | 150=FF
1 N
il I 1L =
...0110 01111 5 Lo S{15)wlr] [17 }»{r [18 [=[F] [203=fr =
11 S S =
Patt 3 —=FF — = FF — FF — FF
As soon as data * ' ' )
are present from A ) A
each Layer, they HIT HIT it Flags raised
are put on the bus, Layerl Lay§r2 Layf_'g if matching

to be seen

In_each hit
by all stored words @ @ 6 @ independently
along this bus ' ]
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Layer O Layer 1 Layer2 Layer 3

ONE PATTERN .u\
% Part 0 éu‘ﬁi‘#’*? (ot v (ATCHED
_ )
{6,6,7,7}  port 1411l (12 [ofrd [14 | =fr] [15}=[F
1 N
L0110 [WOLIT ., {15 (17}l ([18)elm (2007 |2
; ¢ ; ) |7
Patt 3 —=FF — = FF — FF — FF
As soon as data * ' ' )-
are present from A ) A
each Layer, they HIT HIT .rr AND all flags
are put on the bus, Layerd Lay§r2 Layir3 to get a
to be seen complete
by all stored words 11 @ 6 @ pattern
along this bus 12 10 matching.
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Result:
Matched
Patterns

pattern Bus_Layer=(0= Bus_Laver=l> Bus_Layer<d> Bus_Layer=T» —_

/\ | MRoadSn
nw patter O |ayer ﬂ—-? | & yomr 1—-? | ayer

e 1= ]

One flip-flop pattar 2 ] |
per layer P’ P’ ——————

stores the
pomern g [ [

match results I A s

] M

Flexible input: HMW I% e S

position, time,
objects (e, u, y) HI4T H?T H?T H?T

< F READOUT TREE

Pattern matching is completed as soon as all hits are loaded.
Data arriving at different times is compared in parallel with all patterns.
Unique to AM chip: look for correlation of data received at different times.
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f——7 *(90's)Full custom VLSI chip - 0.7um (INFN-Pisa)
H 15 - 128 patterns, 6x12bit words each, 30MHz
F. Morsani et al., IEEE Trans. on Nucl. Sci., vol. 39 (1992)

Alternative FPGA implementation of SVT AM chip
P. Giannetti et al., Nucl. Intsr. and Meth., vol. A413/2-3, (1998)
G Magazzu, 1st std cell project presented @ LHCC (1999)

Standard Cell 0.18 pum — 5000 pattern/AM chip
SVT upgrade total: 6M pattern, 40MHz
A. Annovi et al., IEEE TNS, Vol 33, Issue 4, Part 2, 2006

AMchip04 —65nm technology, std cell & full custom, 100MHz
Power/pattern/MHz ~30 times less. Pattem density x12.

First variable resolution implementation!
F. Alberti et al 2013 JINST 8 C01040, doi:10.1088/1748-0221/8/01/C01040

[ FTK R&D J
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il

that it's a huge effort to design and make such a thing

SICs: saw on Saturday from Alessandro Marchioro

ISOTDAQ2023,

AM chip for FTK AMchip06

L1

=

-
FTK-AMCHIPOS
‘H-EE

Istanbul, 21/6/2023

g FFERENN

90's Full custom VLSI chip - 0.7mm (INFN-Pisa) 128 patterns,
6x 12bit words each (F. Morsani et al., The AMchip: a Full-custom

MOS VLA Associative memory for Pattern Recognition, IEEE
Trans. on Nucl Sci.,vol. 39, pp. 795-797, (1992).)

1998 FPGA tor the same AMchip (P. Giannetti etal. A
Programmable Associative Memory for Track Finding, Nucl. Intsr.
and Meth., vol. A413/2-3, pp.367-373, (1998} }.

1999 . Magazz(, first standard cell project presented at LHCC

2006 Standard Cell UMC 0.18 pm 5000 pattern/AMchip for CDF
SVT upgrade total: 6M patterns (L. Sartori, A. Annoviet al, A VLSI

Processor for Fast Track Finding Based on Content Addressable
Memories, [EEE TNS, Vol 53, Issue 4, Part 2, Aug. 2006 )

2012 AMchip04 Bk patterns in 14mm2, TSMC 65nm LP
technology Power/pattern/MHz 40 times less. Pattern density x12.

First variable resolution implementation. (F. Alberti et al 2013
JINST 8 CO1040, doi:10.1088/1748-0221/8/01/C01040 )

2013-2014 AMchip MiniAsic and AMchip05
a further step towards final AMchip version.

Serialized input and output buses at 2 Gbs, further

power reduction approach. BGA 23 x 23 package.

2014-2015 AMchip06: final FTK version of the
AM::hip for the ATLAS experiment .

AMch|p06 the FTK AM chip has 128k patterns/chlp
AMchip08-09: the AM chip for HTT: ~400k pat./chip
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https://indico.cern.ch/event/928767/contributions/3905000/attachments/2465005/4226921/ISOTDAQ%20School%20Catania%202022.pdf

Photomultipliers

Position: z
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For example, task = Associate the measured X1 and X2:
e.g.,X1=5 with X2=8

A

X2

O

Squares represent all possible patterns
in the (X1,X2) phase-space
*** This is the “pattern bank”

-~

RN WSR~OIONN

12 34567839

PATTERN MATCHED:
(X1,X2)= (5,8)

>
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2Db.

Now that we have a system that
does pattern matching as the data
are coming In,

how do we deal with the number of
patterns which can be big in the
high-granularity detectors?

ISOTDAQ2023, Istanbul, 21/6/2023 K. Kordas - Pattern Recognition w/ Associative
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Wide patterns Thin patterns

I L]
[ ]
[ |
[ []

The choice is a compromise

High efficiency More patterns (hardware)
with less patterns (hardware) for same efficiency less fakes I
BUT more fakes Fakes are workload for track fitter "

Recall: the number of patterns Np, with m layers, of n bins each, is Np:(m—l)n2
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0.4
0.3}
0.2
01

Pattern size Reduce Pattern size (half size)
r-¢3624 _pixlels, 20 SCT strips pattern r-¢3é|2 _pixlels, 10 SCT strips
z: 36 pixels size z: 36 pixels
- - e 1_ -
Coverage: pattern efficiency ::
Efficiency: track efficiency "
0.5
— Coverage 04 Coverage
| — Efficiency 0.3 cfficiency
: 02
g 0.1
0 - 556 e % m:-dlf 0 | | . o . beto®
Bank size (per region)

doi:10.1109/ANIMMA.2011.6172856

ATL-UPGRADE-PROC-2011-004

<# maitched Batternsfevent @ 3E34> = 342

# roads (large fake fraction) represents

P ) (O N il i |l
200 400 5640 800 1000 1200 1400
@ Bank size (per region)

e workload for the track fitter

90%
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Use the feature of “ternary CAMs”
« Ternary CAM: added flexibility to the search

- allows a third matching state of "X" or "Don't Care" for
one or more bits in the stored pattern word: one
pattern matches various data words

« Example: a ternary CAM might have a

stored word of ~ -----oeeeooooeo > "10XX0" (“one_pattern”)

This will match any of 4 search words: "10000" (“the data”)
"10010" (“the data”)
"10100" (“the data”)
"10110" (“the data”)

The added flexibility comes at additional cost:

- the internal memory cell must now encode three possible
states instead of the two of binary CAM. This additional
state is typically implemented by adding a mask bit

("care" or "don't care" bit) to every memory cell.
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Alberto Annovi

* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics
ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856

* “Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013

« For each layer: a "bin” is identified by a number with DC bits (X)
« Least significant bits of “bin” number can use 3 states (0, 1, X)
* The "“bin” number is stored in the Associative Memory

« The DC bits can be used to OR neighborhood high-resolution bins,
which differ by few bits, without increasing the number of patterns

Pixels:

(v b I
Using binary format
0 nﬂ 4 m- “010?0" selzcts bin 10
8 9 m 12 13 “0001x” selects bins 2 or 3

“1x000” selects bins 16 or 24
e I e e “Ox11x” selects bins 6,7,14, or 15

m 25 26 27 ---- \“111xx” selects bins 2’8 ’Zn ?;1 J
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« Majority Logic: Only require N out of M layers have a match

- Gains efficiency

- Variable Resolution Patterns (Don’t Care Bits)

With 2 DC bits: Apart from reduction in fakes (factor 7),
we save also a factor 5 in the size of the pattern bank!

Mo variable resolution:
3 patterns needed

1 bit variable resolution: 3 bit variable resolution:
1 pattern needed 1 pattern with lflﬁth volume

—~ N\

"“"-._

Technique can be exploited by any coincidence based trigger!

Alberto Annovi
* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics
ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856
| F Varlable resolutlon Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013
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3.
So, we have found possible tracks (the
matched patterns)

Each matching pattern defines a “road”
for the refined tracking

\
fetch all the (few now) hits In the road

\
fit them to a helical track to measure
the track parameters precisel
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R,@,z = hit positions of track with curvature p, starting
at {R=0, ¢, z,}

E.g.,

Relations
between

hit coordinates
and

track parameters
are not linear

e.g., hit coordinates ¢, z

z = 29 +\2parcsin

R
(5

e.g., track parametres

R
p

)

p

, and

) cot 6

ISOTDAQ2023, Istanbul, 21/6/2023
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E.g., R,p,z=hit positions of track with curvature p, starting

at {R=0, ¢, z
Relations { P 0}

between o 0

hit coordinates =g~ aresin (Qp) 18
and R

track parameters z = 29 + 2parcsin (%) cot 6

are not linear

track parametres p hit coordinates x
and x? test of fit

- get trackarameters p;

i bi = 2:j A Di
linear fitter where p; and x; arg the track parameters and hit positions about which the linear
1 ansion is performed : : :
- hneaf . \ P P Linear approximation holds for small
approximation 2 2 detector regions — specific constants for

each region — can have many constants

\ where the coefficients 4;; and B;; are obtained from the PCA.
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Track fitting in FPGAs: 1 stage, 8 layers

Pattern recognition
layers
8 layers track fit

e full resolution hits

e S B2 B

* reject most fakes

5 parameters &
do, z0, eta, phi, PT, ¢’

Full resolution hits

Hit coordinate
(local to each
detector module)

N

~ “

Pi = E Cizy + ¢
I—1 IBLI | | | |

Track fitting in FPGAs w/ many Digital Signal Processors\(DSPs)
BUT: Linear approximation: get a set of linear equations
“each parameter depends linearly on the hits” - fast

multiplications with pre-computed constants ~1 Gfits/s per FPGA

Limiting factors: # constants in memory & speed of retrieval
) ) : - 7



* Pattern recognition
layers
» 8 layers track fit
e full resolution hits
* reject most fakes

» Extrapolate track to
other layers NN

 Look for hits in a
narrow region

* Full 12 layer fit -

SCT layers

g € 4 £

Pixels

IBL

Done on FPGASs, on a “2nd stage” board
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Some documentation for detalls

FTK Technical Design Report (TDR): https://cds.cern.ch/record/15529537In=en
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2013-007/index.html

HTT described (some changes since then) in:
ATLAS Trigger and Data Acquisition Phase-ll Upgrade Technical Design Report.
Tech. rep. ATL-COM-DAQ-2017-185. https://cds.cern.ch/record/2296879

FTK Public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FTKPublicResults

A word on strategic decisions. FTK and HTT are not to be used after all:

the luminosity expected for the Run3 of LHC (2023-2025) will not be a factor of 3
higher than Run2, as thought at the time FTK was proposed and designed.

So, this did not make FTK a necessity; can increase the CPU farm to do the job.

For HTT to the HL-LHC era, given the cost of the system, the rapid growth

of commercial solutions and (I think the most important after all) the number of
experts needed to run it, the tracking will be done in a large CPU farm, with
possibly FPGAs and GPUs as co-processors.

The final FTK paper:

The ATLAS collaboration (G. Aad et al.),
“The ATLAS Fast TracKer system”, 2021 JINST 16 P07006 (_DOI:10.1088/1748-0221/16/07/PQ7006 ).
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https://cds.cern.ch/record/1552953?ln=en
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2013-007/index.html
https://cds.cern.ch/record/2296879
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FTKPublicResults
https://iopscience.iop.org/article/10.1088/1748-0221/16/07/P07006

Some Refs: Content Addressable Memory,
the Associative Memory & FPGAS

K. Pagiamtzis and A. Sheikholeslami, “Content-addressable
memory (CAM) circuits and architectures: A tutorial and survey,’
in IEEE Journal of Solid-State Circuits, vol.41, no.3, pp. 712-727,
March 2006

M. Dell'Orso and L. Ristori, "VLSI Structures Track Finding", Nucl.
Instr. and Meth. A, vol. 278, pp. 436-440, 19809.

e W. Ashmanskas et al., "The CDF online Silicon Vertex Tracker",
Nucl. Instr. and Meth. A, vol. 485, pp. 178-182, 2002.

 A. Annovi, et al., “Associative memory design for the Fast TracK
processor (FTK) at ATLAS,” in IEEE NSS/MIC, 2009, Orlando, pp.
1866 - 1867.

 C.-L. Sotiropoulou, S. Gkaitatzis, A. Annovi, et al. “A Multi-Core
FPGA-based 2D-Clustering Implementation for Real-Time Image
Processing”, in IEEE Trans. on Nuclear Science, vol. 61, no. 6, pp.
3599 - 3606, December 2014.

4
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* Split the problem in a fast (coarse) one, and a refined one

working with much reduced data (we do this all the time in
the trigger)

* Use pre-calculated patterns & values wherever you can: if
you get the desired precision, you gain a lot in time

...And time is precious in the online world!

« We saw the example of the Fast TracKer (FTK) and the
Hardware Tracking for the Trigger (HTT) upgrades in ATLAS

- AM-based pattern matching with “AM chip” (ASIC),

- refined track-fitting + almost everything else
needed (from formatting to smart databases to 1/O)

in powerful modern FPGAS (recall Hannes Sakulin’s &
Mauricio Feo’s talks)
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 Constants can be coefficients in Taylor expansions,
Fourier series, etc. e.q.,

- sin(x) = Taylor expansion gives a polynomial to
calculate sin(x)~x—x*/6+x/120

* Or, use Look-Up Tables (LUTs = pre-calculated values
stored in tables) — interpolate between stored values to
get value of sin(x) you ask for :

]

' function lookup sine(x) 0 I T N
' x1 := floor(x*1000/pi)
" yl := sine table[x1]

' y2 := sine table[x1+1]
:
(8

return yl1 + (y2-yl)*(x*1000/pi-x1)
Linear interpolation on a
portion of the sine function
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« Pattern matching: Towards AMO09: the 400k patterns per chip:

- “The AMO8 Associative Memory ASIC Design, Architecture and
Evaluation methodology”,

A. Vgenopoulos et al., published as procceedings in MOCAST2022

Track Fitting: We saw that we can make the Track Fitting very fast with
linearized equations (track parameters expressed as linear functions of hit
positions). But, need small regions for the linear-equations-approximation to be
true - many sets of equation parameters (one set per region).

— Can make a coordinate transformation to an “idealized geometry” and
there the detector regions where the linear approximation holds are

much larger: much fewer regions - fewer equations -

fewer sets of parameters - much smaller memory
needs on the FPGAs:

“A High-performance Track Fitter for Use in Ultra-fast Electronics”, E.
Clementa et al., 2018, arXiv:1809.01467
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https://cds.cern.ch/record/2839917/files/ATL-DAQ-PROC-2022-022.pdf
https://arxiv.org/abs/1809.01467

linear fitter <

R,¢,z = hit positions of track with
curvature p, starting at {R=0, ¢, z,}

¢ = ¢ — arcsin (%) , and
zZ = zg + 2parcsin E cot 6

. get x? =Z; x?, where
Xxi = I Byj(x; — )
\ where the coefficients A4; ; and B;; are obtained from the PCA.

- get track parameters p; as a linear function of hit coordinates x;

pi =% Ay(x — %) + o
where p; and x; are the track parameters and hit positions about which the linear
expansion is performed

Linear approximation holds for small
detector regions — specific constants for
each region — many constants

Transform the hit positions R,p,z — R’, ¢’, 72’

( AR=R-R’, c=+/-1 ), so that the detector looks
linear to the linear fitter:

First order
= ¢+AR2_ T'E(Rz_p) irl_Aqbstrlp;

- . 2
| | !
7=z _EARCOtHE_i gcotﬁ(i) R3§ Strip
R S SRS, o 57 Y ‘corrections
Second order

(important at low py)

R. Eusebi, “A High-performance Track Fitter for use in Ultra-fast Electronics”, 2020
talk based on the original work of E. Clementa et al. https://arxiv.org/pdf/1809.01467.pdf

ISOTDAQ2023, Istanbul, 21/6/2023
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https://arxiv.org/pdf/1809.01467.pdf

- “A High-performance Track Fitter for Use in Ultra-fast Electronics”, E.

Clementa et al., 2018,

First order

_________________________________________

Second order
(important at low py)

arXiv:1809.01467

120

T

€
t Feezzzrezzrszzesszseson:
© 100[—

80—

60— I : "y
B = = _— _— [ ' M. “. ' : ||!_!

I lll "l

W h "

T i i ol i
AT g vl anBRES

1 " " " " 1 L " " 1 1 " " " " 1 " L L " 1 " " " I
! Strip 50 100 150 200 250 300
:corrections _
e 120

O

e

“ 100

80
60

40

T |l III-IIIIIIIIIIII

20]

IIIII

L L L s b 1 ' L " L | L L L L 1 L L L L 1 N " " s
50 100 150 200 250 300
z [em]

OO

Figure 3: Hit positions in the (r, z) plane. The colors represent hits assigned to the different regions. Top:
original positions. Bottom: transformed hit coordinates.
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C. Other examples for
track finding &
track fitting
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 What was presented here is not the only way to solve the
tracking problem fast. Other solutions exist, e.q:

- Hough transform in FPGAs,

— Other algorithms in FPGAs (e.g., Retina algorithm: Luciano
Ristori, NIM A 453 (2000) pp. 425-429)

- Solutions implemented on GPUs (- You heard from
Gianluca Lamanna)

- Machine Learning for TDAQ in GPUs and FPGAs ( — You heard
from Satchit Chatterji & Thomas Owen James)

 Nothing can be as fast as doing the tracking while reading
your data, as they pass through the system.

- You an even build a specific ASIC to implement what you can
do in an FPGA

- Commercial solutions (e.g., CPUs, FPGAs, GPUs, etc.) can
overcome slower speed with high parallelism

— it's all a matter of cost at the end...
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https://indico.cern.ch/event/1182415/contributions/5226992/attachments/2667410/4622641/lamanna_isotdaq_2023.pdf

« ~99% of tracks have p; < 2 GeV/c; - Fail |

interesting things have higher p+ :
tracks. 12 mm Upper Sensor

« CMS makes the detector itself | =200
selective on such tracks by finding o Lower Sensor 7
track “stubs” on closely spaced layers >

(~15,000 stubs in total, every 25 ns)
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- ~99% of tracks have p; < 2 GeV/c ; P Fail §
interesting things have higher p+ r
tracks. h 1-2mm Upper Sensor

« CMS makes the detector itself | =200
selective on such tracks by finding o Lower Sensor 7
track “stubs” on closely spaced layers >

(~15,000 stubs in total, every 25 ns)

- From a track generated with ¢, and p, in

B=4 Tesla, you have stubs (straight lines) of
angle ¢ at double layers at radius r.

Pr

Radius of curvature=R__ = 03Bq’ q==1 _ +0.006
r i 0= P r+a@,
i — = 20— Q= '
S1N (QD g”O) ZRCUW (p (PO 2Rcurv @=ur+yv
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* This @(r) behaviour is a straight line: @ =ur+v

- Could do a “Hough transform”: map individual {r, ¢}
measurement points to a whole-line in 2D space; 2D = the
slope (u) & the intercept (v)

- Given an {r,@} pair; foreachu,getv: v=-ur+ ¢

and put {u,v} in a 2-dimensional histogram
V &
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* This @(r) behaviour is a straightline: @ =ur+v

- Could do a “Hough transform”: map individual {r, ¢}
measurement points to a whole-line in 2D space; 2D = the
slope (u) & the intercept (v)

- Given an {r,@} pair; foreachu,getv: v=-ur+ ¢

and put {u,v} in a 2-dimensional histogram

V 4
\;_ . « {r,¢} measurements from same

track will populate same {u,v}
bin
* Most populated bin =
characterises whole track
| u * Note: Small |u| values:
lul = 0.006/P;+ - |u|] < 0.003
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* This @(r) behaviour is a straightline: @ =ur+v

- Could do a “Hough transform”: map individual {r, ¢}
measurement points to a whole-line characteristic in 2D
space; 2D = the slope (u) & the intercept (v)

- Given an {r,p} pair; foreachm,getc: v=-ur+ ¢

and put {u,v} in a 2-dimensional histogram

V 4
.= « {r,@} measurements from same

track will populate same {u,v}
bin
« Most populated bin =
characterises whole track
1= U * Note: Small |u| values:
lul = 0.006/P; - |u| < 0.003

Pileup events: {u,v} array heavily populated and such peaks are not initially
prominent.

But, by requiring e.qg., all stubs in the (u,v) histogram bin to be from different
radial layers, significantly reduces the background
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Hough transform (3/3)

P. V. C. Hough, i) “Machine Analysis of Bubble Chamber Pictures”, 2nd
International Conference on High-Energy Accelerators and Instrumentation,
HEACC 1959 : CERN, Geneva, Switzerland, September 14-19, 1959, 554-558.
Published in: Conf.Proc.C 590914 (1959) 554-558, ii) “Method and means for
recognizing complex patterns,” U.S. Patent 3,069,654, 1962.

« R. O.Duda and P. E. Hart, “Use of the Hough transformation to detect lines and
curves in pictures” Communications of the ACM, vol. 15, no. 1, pp. 11-15, 1972.

« J. lllingworth and J. Kittler, “The Adaptive Hough Transform”, IEEE Trans. On
Pattern Analysis and Machine Inteligence, Vol PAMI-9, No. 5, Sept. 1987, pp. 690-
698.

L. Voudouris, S. Nikolaidis, A. Rjoub, “High Speed FPGA implementation of hough
transform for real-time applications” , 2012 IEEE 15th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems, Tallinn, Estonia,
2012, pp. 213-218, doi: 10.1109/DDECS.2012.6219060

...etc...

« On FPGAs: important to adapt the algorithms to the constraints of
FPGA operation. Algorithms can overflow the capacity of even a very large
FPGA because of timing constraints or routing congestion, as you learned in
the lectures
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https://ieeexplore.ieee.org/document/6219060

a) Luciano Ristori, NIM A 453 (2000) pp. 425-429. b) R. Censi et al., First
Results of an “Artificial Retina” Processor Prototype, EP] Web of Conferences
127, 00005 (2016)

Inspired by the quick detection of edges in the visual cortex of mammals :

Specific neurons, called receptive fields, receive signals only from specific
regions of the retina, in order to reduce the connectivity and save bandwidth.

The neurons are tuned to recognize a specific shape and the response is
proportional to how close are the stimulus shape and the shape for which

the neuron is tuned to. Generated in parallel, the responses of neurons are
then interpolated to create a preview of image edges
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a) Luciano Ristori, NIM A 453 (2000) pp. 425-429. b) R. Censi et al., First Results of an
“Artificial Retina” Processor Prototype, EP] Web of Conferences 127, 00005 (2016)

Inspired by the quick detection of edges in the visual cortex of mammals : Specific neurons, called
receptive fields, receive signals only from specific regions of the retina, in order to reduce the connectivity
and save bandwidth. The neurons are tuned to recognize a specific shape and the response is proportional
to how close are the stimulus shape and the shape for which the neuron is tuned to. Generated in parallel,
the responses of neurons are then interpolated to create a preview of image edges

e Algorithm has First, map: template tracks & cells in the track-parameter space

mathematical similarities  “template track hits

with“Hough transform”
= receptors” “cells = neurons”

AV

YY

- 9=

- ™
Bz =3 B

Detector layers
Tracks u,v track parameters

ISOTDAQ2023, Istanbul, 21/6/2023 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs 75



a) Luciano Ristori, NIM A 453 (2000) pp. 425-429. b) R. Censi et al., First Results of
an “Artificial Retina” Processor Prototype, EP] Web of Conferences 127, 00005
(2016)

Two levels of parallelization:
Each cell processes in parallel hits from a limited detector region: small bandwidth per cell

If events have time stamps, events can be processed simultaneously.

For each cell, each hit adds a weight, calculated according to distance of the
actual hit from the “receptor hit” for this cell at the same layer

w

—|&|d: (e we

— | 5 |E B AR

g — ~N ] /.f o "\;

Detector layers cC ] | ¢ o
Hits — u !
u,v track parameters ]
(a) Step 1 w = €Xp (—2_] (b) Step 2

Track -» 1 cell Each (u,v) cell shows up

Road - cell cluster in all n detector layers

3x3 cluster
sumW = 2w

".]I‘ u H Centroid

«VJ\/ measures track

sumW > threshold parameters (u,v)
with better precision

than bin size
Figure 2: Processing steps of track reconstruction with the artificial retina algorithm.

(c) Step 3
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Artificial Retina Algorithm (3/5)

a) Luciano Ristori, NIM A 453 (2000) pp. 425-429. b) R. Censi et al., First Results of an
“Artificial Retina” Processor Prototype, EP] Web of Conferences 127, 00005 (2016)

Inspired by the quick detection of edges in the visual cortex of mammals : Specific neurons, called

receptive fields, receive signals only from specific regions of the retina, in order to reduce the connectivity

and save bandwidth. The neurons are tuned to recognize a specific shape and the response is proportional
to how close are the stimulus shape and the shape for which the neuron is tuned to. Generated in parallel,
the responses of neurons are then interpolated to create a preview of image edges

Thanks to the weight,

the contribution from
hits which are far
from the mapped
track is negligible

and Retina is able to
find the track even in
the presence of noise
hits or hits from
additional tracks.

For each cell, each hit adds a weight, calculated according to distance of the
actual hit from the “receptor hit” for this cell at the same layer

w
- — 2 :
— S ﬁ_ i E ® Weight gy
+ == -
— NG Pgg © it e
Detector layers | L )
el ._| ;' 1 x, /
u,v track parameters d12
a) Step 1 W=€XP|—5— | ® sStep2
(a) Step 2% (b) Step

Track » 1 cell
Road - cell cluster

Each (u,v) cell shows up
in all n detector layers

3x3 cluster
sumW = 2w

Centroid

,"l\)/ measures track
Iq Y max parameters (u,Vv)

with better precision
than bin size
Figure 2: Processing steps of track reconstruction with the artificial retina algorithm.

sumW > thresho
(c) Step 3
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Artificial Retina Algorithm (4/5)

a) Luciano Ristori, NIM A 453 (2000) pp. 425-429. b) R. Censi et al., First Results of an
“Artificial Retina” Processor Prototype, EP] Web of Conferences 127, 00005 (2016)

Inspired by the quick detection of edges in the visual cortex of mammals : Specific neurons, called

receptive fields, receive signals only from specific regions of the retina, in order to reduce the connectivity

and save bandwidth. The neurons are tuned to recognize a specific shape and the response is proportional
to how close are the stimulus shape and the shape for which the neuron is tuned to. Generated in parallel,
the responses of neurons are then interpolated to create a preview of image edges

Big bandwidth
reduction at the
output: send out
centroids centered
at cells with sumw >
threshold

(a compromise
between

track finding
efficiency and # fake
tracks , like always )

For each cell, each hit adds a weight, calculated according to distance of the
actual hit from the “receptor hit” for this cell at the same layer

w
— | 2 :
— i @ Weight o
— (@) — 18 J .
F =53 - 7
; — = : x, hit )
Detector layers cC ¢ T :_
Hits 1 u /

.'dlz

w = €xXp (‘5](};) Step 2

Each (u,v) cell shows up

in all n detector layers
sumW = 2w,

>
u,v track parameters

(a) Step 1
Track » 1 cell

Road - cell cluster
3x3 cluster

5 sl

4 T g .

3 J: )

29 3 - u
Vv g
v\/"

Vv

|d max

(c) Step 3

Centroid

measures track
parameters (u,v)
with better precision
than bin size

Figure 2: Processing steps of track reconstruction with the artificial retina algorithm.

sumW > thresho
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Luciano Ristori, An artificial retina for fast track finding, Nucl. Instrum. Meth. A 453
(2000) 425-429

R. Censi et al., First Results of an “Artificial Retina” Processor Prototype,
EP] Web of Conferences 127, 00005 (2016), Connecting the Dots 2016.

W. Deng et al., lterative Retina for High Track Multiplicity in a Barrel-Shaped Tracker
and High Magnetic Field, IEEE TransNuclScience Vol. 68, No 8, Aug 2021

Can also make an “iterative scan”.

Retina (like Hough) can be applied E.g., have a 4x4 grid of super-cells, find
to cylindrical geometries with magnetic field, the super-cell with the candidate track and
to planar geometries without magnetic field, etc. scan finer 4x4 inside. Thus. do

Each time define (u,v) accordingly 4x4 and then 4x4 = 2 * 4x4 = 32 scans,

instead of 16x16 = 256 for same resolution

Po
Super Sdper
1/Pt

A X

oordinate system
ransformation
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rack in 2-D
x-y plane

>
(u,v) = (x_first layer, x_last layer) @ B
(e.g., VELO at LHCDb)

ISOTDAQ2023, Istanbul, 21/6/2023 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs 79



« What we've seen so faris “global tracking”: all hits available

simultaneously (pattern matching and linear approximation wanted all
hits present to work with the patterns and constants needed).

« “Local tracking” (~progressive tracking): add hits on the way

* Track finding at CMS for L1 tracking:

- stubs in adjacent layers form “tracklet seeds” —» a) growth of tracks by
projection to next layers and X2 test for adding a new stub, b) update track
parameters, c¢) extrapolate further to include more stubs and so on.

« E.g, see (and references therein): T. James, “Level-1 Track Finding with an all-FPGA system
at CMS for the HL-LHC”, arXiv:1910.12668

A. Hart, “Level 1 Track Finder at CMS" arXiv:1910.06614

E.Bart, FPGA-based tracking for the CMS Level-1 trigger using the tracklet algorithm,
arxiv:1919.09970 JINST 15 P06024 (2020)
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“Local tracking” (~progressive tracking): add hits on the way
Track finding at CMS for L1 tracking:

- stubs in adjacent layers form “tracklet seeds” —» a) growth of tracks by
projection to next layers and x? test for adding a new stub, b) update track
parameters, ¢) extrapolate further to include more stubs and so on.

Track fitting at CMS for L1 tracking:

“Kalmam filter” — project the track parameters of the tracklet to each next
layer, recalculate hit positions based on extrapolation and observed hits,
recalculate and extrapolate track parameters and so on.

E.g,

T. James, “A hardware track-trigger for CMS at the high lumi- nosity LHC,” Ph.D. dissertation, Dept. Phys.,
Imperial College London, London, U.K., Feb. 2018.

From: W. Deng et al., Iterative Retina for High Track Multiplicity in a Barrel-Shaped Tracker and High
Magnetic Field, IEEE TransNuclScience Vol. 68, No 8, Aug 2021
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« Typically, need refinement after track finding. (e.qg., in both Hough and
Retina, the finite cell size in 1/Pt means bad Pt resolution for high Pt).We
saw the linearized track-fitting approach of FTK/HTT in FPGAs. Here, see
Kalman fitler ( R. Frithwirth, “Application of Kalman filtering to track fitting in the
DELPHI detector”, Tech. Rep. CERN-DELPHI-87-23-PROG-70, 1987 ).

- Kalman returns track parameters (1/Pt, ¢,, cotf, and z;), at the end of an
iterative process. Track parameters from track finding (e.g., 1/Pt, ¢,) serve
as initial “state vector” (e.g., x_0 = {1/Pt, ¢,, cot6=1, and z,=0}
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« Typically, need refinement after track finding. (e.qg., in both Hough and
Retina, the finite cell size in 1/Pt means bad Pt resolution for high Pt).We
saw the linearized track-fitting approach of FTK/HTT in FPGAs. Here, see
Kalman fitler ( R. Frithwirth, “Application of Kalman filtering to track fitting in the
DELPHI detector”, Tech. Rep. CERN-DELPHI-87-23-PROG-70, 1987 ).

- Kalman returns track parameters (1/Pt, ¢,, cotf, and z;), at the end of an
iterative process. Track parameters from track finding (e.g., 1/Pt, ¢,) serve
as initial “state vector” (e.g., x_0 = {1/Pt, ¢,, cot6=1, and z,=0}

— Propagation of the state vector from one detection layer “t-1” to the

next detection layer “t”: x, 1

* Propagation is subject to error due to multiple scattering
and energy losses. State vector x, comes with its
covariance matrix P,

— Update the state vector and covariance matrix according to the

measurements (the detector hits) on this layer and their
uncertainties.

— Continue with next layer, and so on.

e Best track at end of iteration.
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* Propagation of the state vector from detection layer “t-1” to the next detection layer

€€y,
| tht_l

@ — Propagation is subject to error due to multiple scattering and energy losses

Predict state vector at t with info till t-1 y info till t-1

from info till t-1
— T
Pt|t—1;Qt—1+Ft—1Pt—1|t—1Ft—l

Noise propagation

Covariance matrix : Initial covariance:
" o2 o040 0 7 0,=0.,=0
Py = U(‘;b ‘701;2 02 0 0.,0,=1/v/12 of Hough/ Retina cell width
Y S 0,=1/V12of Anregion
L 0 0 0w 0F_

0,=RMS(z,)~4.5cm for ATLAS/CMS
{a,b,c,d} = {1/Pt, 9¢,, cotb, z,}

From: W. Deng et al., Iterative Retina for High Track Multiplicity in a Barrel-Shaped Tracker and High
Magnetic Field, IEEE TransNuclScience Vol. 68, No 8, Aug 2021

ISOTDAQ2023, Istanbul, 21/6/2023 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs 84



e Update of the state vector and its covariance with the inclusion of measurements at
@ detection layer “t”

—~
Estimate measurements at t
based on predicted state vector at t

Actual measurement vector m,
with associated covariance R,

\ Strip pitch p
A A . strip length
m; = H, Xt|t—1 Measurement error matrices : R;
- - 2 /12 l
Projector matrix , g =P 0,=——
azz:| Y r V12

A

Pre-fit residuals of measurements at t: mt_mt:mt_Ht‘S\(ﬂt—l

Kalman gain matrix - »
describes improvement in precision of ~ W; = Py H,' (H,Pry1:H + R;)
state vector from the extrapolation

Update state vector, using the measurements m, X=Xyt W,.(m,—m,)
Update covariance, using the measurements m, P,'L“:(I—W,:Ht)lst“_1
Post-fit residuals of measurements att: m,—H x,, Kalman gain should

minimize the residual
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 From wikipedia https://en.wikipedia.org/wiki/Kalman_filter

. Prediction step
Prior knoov:l::;gt: . f;ck—uk—l —> Based on e.g.
. k—=1lk—-1 physical model

Next timestep Ii'klk—l

=k 1 Xk|k—1
Pk Update step Measurements

%, —<—Compare prediction -—
ilk to measurements Ye |
Output estimate
. of state

The Kalman filter 2 keeps track of the estimated state of the system -
and the variance or uncertainty of the estimate. The estimate is updated
using a state transition model and measurements. ﬁk| k—1 denotes the
estimate of the system's state at time step k before the k-th
measurement yx has been taken into account; Pk|k_1 is the
corresponding uncertainty.

Kalman filtering is used in many applications. The “next level” could be the
“next time step”, for example.
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D. Beyond High Energy Physics
applications:
E.g., Image processing with
pattern matching
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« Hough transform is one of the classic techniques used in generic
image processing to do first an “edge-detection”

* Let's see another interesting example on image perception:

M. Del Viva, G. Punzi, and D. Benedetti. “Information and
perception of meaningful patterns.” PloS one 8.7 (2013): e69154.

“... models describe the initial processing of visual information as the
extraction of a simplified “sketch” based on a limited number of “salient
features” [11], [12], that therefore contains a much reduced amount of
information.”
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Beyond High Energy Physics applications:
E.g., Image processing with pattern matching

 Hough transform is one of the classic techniques used in generic
Image processing to do first an “edge-detection”

* Let's see another interesting example on image perception:

M. Del Viva, G. Punzi, and D. Benedetti. “Information and
perception of meaningful patterns.” PloS one 8.7 (2013): e69154.

“... models describe the initial processing of visual information as the
extraction of a simplified “sketch” based on a limited number of “salient
features” [11], [12], that therefore contains a much reduced amount of
information.”

“We adopt the principle of maximum entropy as a measure of
optimization: we ask what choice of the pattern set is producing the
largest amount of “entropy” allowed by the given limitations of the
system. We will see that this simple requirement, together with the
imposed strict limitations to the computing resources of the system,
allows to completely determine the choice of the pattern set from the
knowledge of the statistical properties of the input data.”
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Constrain #1: storage
N = number of patterns
Constraint #2: output bandwidth
W = reduction factor
(e.g., W=0.001 - 1/1000
can be selected with this
pattern set)

p = probability that the given
pattern matches the
(sub)image we check

Entropy / unit cost

fp)= —L 2P
Clirarth
Systems with limitations always have a - unit cost for each
maximum of the “entropy per unit cost”, f(p), pattern

somewhere
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Constrain #1: storage
N = number of patterns
Constraint #2: output bandwidth
W = reduction factor
(e.g., W=0.001 - 1/1000
can be selected with this
pattern set)

p = probability that the given
pattern matches the
(sub)image we check

Entropy / unit cost

___ —plog(p)
. T
Most relevant patterns fall around this R

~unit cost for each

maximum
pattern
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Image processing, an interesting example with patterns:
M. Del Viva, G. Punzi, and D. Benedetti, Fig. 3 and 4

Number of patterns/freq unit

A28 B 75 =5 =
Log(p)

* In a 3x3 grid of possible B&W
cells: 512 possible patterns

- the “best” 50 of them

(use them In the
Images below)

* Using the Blue patterns:
- the “best” 15 of them
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Image processing, an interesting example with patterns:
M. Del Viva, G. Punzi, and D. Benedetti, Fig. 3 and 4

425 4D <75 B 25
Log(p)

Number of patterns/freq unit
r
o O
| |

* In a 3x3 grid of possible B&W
cells: 512 possible patterns

- the “best” 50 of them

(use them In the
Images below)

_  Using the Blue patterns:
= b P / - the "best” 15 of them
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Our tracking detectors also produce “images” (= the set of hits),
and we select events based on them

a b

N
o

d
=

For N=50 and W=0.15
These are the best patterns to use

Number of patterns/freq unit
> B

e
10 8 -6 -4 -2 0
Log(p)

o

Of course, we know that all these zig-zag lines are meaningless
Training on simulated events, to get the patterns with max. entropy,
picks up the patterns we also select when we do simulations

to define the pattern bank.
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Done.

Announcements before closinc

There are specialized conferences on tracking :
Connecting The Dots 2023
10-13 Oct 2023, Toulouse, France https://indico.cern.ch/event/1252748/ )
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An announcement: MOCAST 2023

http://mocast.physics.auth.gr/

E MOCAST

INTERNATIONAL CONFERENCE ON
MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES

HOME TOPICS PAPER SUBMISSION REGISTRATION LOCATION HOTEL INFO CONTACT MOCAST
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Summary

* Saw that need fast tracking information at the Trigger of High
Energy Physics experiments

« We split the problem into “track finding” (define fast a “road” where a
track can be) and “track fitting” (determine the track parameters)

 Saw in some detail the ATLAS FTK and HTT case, using

- Track finding with Pattern matching in Associative Memories ,
and Track fitting in FPGAs

- Basically we saw that: if we want to avoid or cannot afford
calculating something time consuming, we can split the
problem and use pre-calculated patterns and quantities.

« We saw also examples of other approaches, with both steps done in
FPGAS

- Track finding with Hough transform, Artifical Retina Algorithm,
Tracklet seeding.

- Track fitting with linearised track fitting, Kalman filter.

We saw an example of patterns used in image processing
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EXxtras...
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Tracking at HEP:
AMs , CPUs, FPGAS and GPUs

V. Halyo, et. al., “GPU Enhancement of the Trigger to Extend Physics
Reach at the LHC,” Journal of Instrumentation 8 P10005, 2013.

 C. Gentsos, F. Crescioli, P. Giannetti, D. Magalotti, S. Nikolaidis, “Future
evolution of the Fast TracKer (FTK) processing unit”, PoS (TIPP2014)
209

 A. Annovi, et al., “Associative Memory for L1 Track Triggering in LHC
Environment,” in IEEE Trans. on Nuclear Science, Vol. 60, No. 5, pp.
3627 - 3632, 2013.

 @G. Hall, et al., “A time-multiplexed track-trigger for the CMS HL-LHC
upgrade”, in NIM A, Vol.824, 11 July 2016, pp. 292-295

 A. Abba et al., “Simulation and performance of an artificial retina for 40
MHz track reconstruction”, in JINST 10 C03008 (2015)

 ...etc, etc....
HighLuminosity-LHC (HL-LHC): pile-up of ~140-200 events/crossing
will be typical; up to 200 events per crossing are considered likely.
At L1: need tracking in <10 ps (<2-3us giving time to rest)
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 D. Emeliyanov, et al., “GPU-based tracking algorithms for the

ATLAS high-level trigger” in Journal of Phys. Conf., Ser. 396,
012018, 2012.

* J. Mattmann, et al., “Track finding in ATLAS using GPUs,” in
Journal of Phys. Conf., Ser. 396, 022035, 2012.

* Y. Ago, Y. Ito, and K. Nakano, “An FPGA implementation for
neural networks with the FDFM processor core approach,”
International Journal of Parallel, Emergent and Distributed
Systems, vol. 28, no. 4, pp. 308-320, 2012.
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http://ftk-iapp.physics.auth.gr/

This project aims to develop an extremely fast but compact processor, with
supercomputer performances, for pattern recognition, data reduction, and
imformation extraction in high quality image processing.

The proposed hardware prototype features flexibility for potential applications in a
wide range of fields, from triggering in high energy physics to simulating human
brain functions in experimental psychology or to automating diagnosis by imaging
in medical physics. In general, any artificial intelligence process based on massive
pattern recognition could largely profit from our device, provided data are suitably
prepared and formatted.

The project has received funding from the

European Union's Seventh Framework Programme for research, technological development

and demonstration under grant agreement n.324318

Participants (2 SMEs and 4 Academic Institutions)
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FP7 Project  University of CAEN SpA Electronics
324318 - 4 CNRS, France ABEE,
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Dual HOLA card

Copy the hit from ID
and send to FTK

Input Mezzanine card(IM)
+ Data Formatter(DF)

IM: Receive the hits and perform
clustering

DF: hit sharing and provide pipeline
(the “custom switch” to fan-out hits
to the relevant Processor for this n-
@ tower

100 kHz
Event
Rate

YYYY
Raw Data

Cluster
Finding

Core rte
e
eooe
Second Stage Fit (4 brds)
¥
Track Data '
ROB FLIC -

l_':' FTK ROBs |=HLT

ROBs

FProcessing

* Red: involvement of the group

Processor Units: Auxiliary card(AUX) +
Associative Memory Board(AM)

AM: pattern recognition in SuperBin
(“SuperStrip”) resolution

AUX: a) mapping between hits and
SuperStrips”,
b) track fitting: pt, n, ¢, dO, zO

Second Stage Board(SSB)

Reduce the fake track using
remaining silicon layers.

FTK to Level2 Interface Crate(FLIC)

Send track info to HLT
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Input Mezzanine card(IM)
+ Data Formatter(DF

Processor Units: Auxiliary card(AUX) +
Associative Memory Board(AM)

Dual HOLA card ‘
= - B Y& bipeline
_ ' = lout hits

Cluster ore C
Finding e
2 PUjtower
100 kHz
Event eeee
Rate
Track Data :
FLIC
YYYY \ ROB

|
e —=[FTK ROBS|=HLT
ROBs £Processing

* Red: involvement of the group
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FTK : working configuration

. , ] DC bits group detector
» High resolution patterns: (15x36),,,X16 channels together and

— Pixels: 15 channels along ¢, 36 ch. along n increase the pattern
— Strips: 16 strips resolution

« Background events with 69 superimposed pp collisions
— Instantaneous luminosity 3*1034 Hz/cm?2

« Hardware constraints (for each of 64 n-¢ towers)
— # AM patterns < 16.8 * 10°
— #roads/event <16 * 10°

— #fits/event < 80 * 10° Work loac| for track fitter

-l __

#AM Efficien roads/ fits/evt™

pattern cy % evt *10° 103
*106

16.8 93.3% 3.2 26

Coarse Max #
resolution DC bits
roads | layer

Barrel ~ (30x72),,X325, 25X st

Endcap (30x72),,x325, 2,,X1s L16.8 91.2% 6.9 55
Alberto Annovi
* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics
ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856 -

| * “Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013 g



FTK Latency

FTK has enough processing power at L=3x1034cm-2s-1 (operating rate ~60% )

Latency was rise-up by heavy event, but after such an event the latency quickly return to the typical

range.
L=3x1034 MC sample (Z-> @ 100 kHz LVL1 rate.
~200 FrT= T T e e I e DT Do 0 ]
o | o c |
[ > 5{!-
| LLl
a0 ‘
0 F
20} 1
10 [L|h|’\l
_ [+ :
D:nnn I | I | I B | I | 1 ﬂ-n|I|||I|||I|||I|||I—I|.L!-”-|IJ'IJ1[|ZL|]_|:ﬂﬂﬂ|rn|T[|||
0 200 400 600 800 1000 0 20 40 60 80 100 120 140 160 180 200
Event number Latency (u sec)

Averagely latency is ~50 psec and maximum on tail is ~ few handed usec. It is enough
speed for HLT requirement.



Efficiency w.r.t. Offline

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

FTK Track performance

All results are base line of FTK performance!

|_| | T TTT | TTTT | T T TT | T TT | T T T | T TTT | TTTT | TTTT IL.ILI |:|
- —-muon =
= --pion ATLAS Simulation, no IBL =
[ I | | 111 1 I L1 1 | | I 1 11 | 11 11 I 111 | | | I I 11 1 I 11 1 1 | Tl
0O 10 20 30 40 50 60 70 80 90

p_[GeV]

Tracks are offline like performahce
Difference is

Algorism of hit clustering

Lack of Low Pt patterns

Broken of linear approximation.
No TRT, not dray correction, etc

% 0004 — I T T T T T T ; i =
DU 00355 ATLAS Simulation, no IBL 3
o F +¢¢ -+ Offline +¢__f :
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More than 90 % efficiency with respect to offline.

quT [1/MeV]



« FTK was using the AMchip06, an Associative Memory with

- 128k patterns of 8 words x 18 bits each word
- high speed serial links

- variable resolution (up to 6 ternary bits)

- low power

- 8 X 16 bit comparisons at 100 MHz

« The ATLAS Hardware Track Trigger (HTT) for the HL-LHC
era, was to use an AM chip (AMchip09) with many more
patterns (~400k patterns/chip).

- Applications outside HEP (medical imaging, smart
cameras, genomics, ...)
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 From wikipedia https://en.wikipedia.org/wiki/Kalman_filter

Innovation or measurement pre-fit 5 ”
. Vi = Zr — HiXpp o
residual

Innovation (or pre-fit residual)

Sk = H; Py H + R
covariance k kE k-1 Hy 1 R
Optimal Kalman gain K, =P k“g_ng S;l
Updated (a posteriori) state estimate  Xpx = Xgx—1 + Ki¥i

Updated (a posteriori) estimate

covariance P = (I - KyHy) Pik-1

Measurement post-fit residual Vi = 2k — HiXpp
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https://en.wikipedia.org/wiki/Kalman_filter
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