

04 Mar 2011, LHC HI day

ALICE Pb+Pb results

- Initial Conditions
 - What is the extent of shadowing, saturation, CGC?
 - Particle multiplicity and its centrality dependence
- Time scales & reaction dynamics & transport properties (vs RHIC)
 - What is the space time evolution of the system? Decoupling size/time?
 - Bose-Einstein correlations
 - Does the system show collective effects?
 - Elliptic flow
- Properties of the medium
 - Parton energy loss: What are the microscopic processes?
 - <u>High-pt particle production (R_{AA})</u>, jets, heavy quarks
 - Multi-particle correlations
 - Initial temperature: Color screening of medium?
 - Quarkonium yields

Next talk by Christian Klein-Boesing

Nov 7: First Pb+Pb collisions

ALICE detector configuration in 2010

ALICE detector configuration in 2010

Complete since 2008:

ITS, TPC, TOF, HMPID, FMD, T0, V0, ZDC, Muon arm, Acorde, PMD, DAQ

Partial installation:

4/10 EMCAL (approved 2009) **7/18 TRD** (approved 2002) **3/5 PHOS** (funding)

~ 60% HLT (High Level Trigger)

Short Status:
All systems fully operational

Trigger conditions

- Open trigger conditions for minimum bias interaction
 - Catches ≈98% of Pb+Pb inelastic cross section
- Zerobias and ultraperipheral triggers also used

- Minbias triggers:
 Coincidences between
 - SPD Fast-Or (≥2 chip hits)
 - V0 (A side)
 - V0 (C side)
- Trigger requirements hardened throughout the run period

Recorded ~90 M triggers, so far reconstructed ~30 M inel. collisions

Offline event selection

- Offline event selection for inel. collisions required to deal with
 - Beam Background
 - Beam gas and Debunching
 - EM processes
 - QED pair production
 - O(100 kbarn)
 - e⁺e⁻ very soft
 - EM dissociation
 - O(100 barn)
 - One or few neutrons in ZDC
 - Photonuclear interactions
 - O(10 barn)
 - Photon energies O(100 GeV), can produce hadrons at mid-rapidity (Kinematics like pA)

Offline event selection to remove background

Determination of collision centrality

- Anchor point via Glauber fits
 - Sources distributed by f*Npart + (1-f) Ncoll
 - Particle production per source modeled with Negative Binomial
 - Robust results anchoring the fit between 30% to 90% percentile
 - Tight correlation between several centrality measures (V0, tracks, Hits, tracks vs V0, ZDC vs V0)
- Relation of percentile classes to Glauber values (<Npart>, etc) purely geometrical by slicing in impact parameter

Glauber model

- Standard geometrical picture of nucleus+nucleus collision
 - Distribution of nucleons according to Wood-Saxon (2pF)
 - Radius (6.62 fm), skin depth (0.546 fm)
 - Inter-nucleon distance (0.4fm)
 - Nucleons travel on straight lines
 - Interaction radius given by $\sigma_{_{NN}}$
 - 64 +/- 5mb used (interp. $p\overline{p}/pp$ data)
 - True value probably ~60mb
 (from ATLAS 7 TeV cross section)
 - Affects Ncoll linearly
 - Measurement@2.76 TeV in April 2011
- Systematic uncertainties by varying model parameters
 - Small effect on <Npart>
 - Uncertainty in σ_{NN} dominant for <Ncoll>

ALICE Pb+Pb results

- Initial Conditions
 - What is the extent of shadowing, saturation, CGC?
 - Particle multiplicity and its centrality dependence
- Time scales & reaction dynamics & transport properties (vs RHIC)
 - What is the space time evolution of the system? Decoupling size/time?
 - Bose-Einstein correlations
 - Does the system show collective effects?
 - Elliptic flow
- Properties of the medium
 - Parton energy loss: What are the microscopic processes?
 - <u>High-pt particle production (R_{AA})</u>, jets, heavy quarks
 - Multi-particle correlations
 - Initial temperature: Color screening of medium?
 - Quarkonium yields

Next talk by Christian Klein-Boesing

Charged particle multiplicity

PRL, 105, 252301 (2010), arXiv:1011.3916

dNch/dη: Comparison to models

PRL, 105, 252301 (2010), arXiv:1011.3916

 $\sqrt{s_{NN}}$ =2.76 TeV Pb+Pb, 0-5% central, $|\eta|$ <0.5 dNch/d η = 1584 ± 76 (sys.)

Energy density estimate (Bjorken):

$$\epsilon(\tau) = \frac{E}{V} = \frac{1}{A\tau} \frac{dN}{d\eta} \langle m_T \rangle$$

$$\epsilon(\tau_0)_{LHC} \ge 3 \times \epsilon(\tau_0)_{RHIC}$$

dNch/dη: Centrality dependence

PRL, 106, 032301 (2011), arXiv:1012.1657

LHC centrality evolution very similar to RHIC

dNch/dη: Centrality vs models

PRL, 106, 032301 (2011), arXiv:1012.1657

- Two-component models
- Soft (~Npart) and hard (~Ncoll) processes
- Saturation-type models
 - Parametrization of the saturation scale with centrality
- Comparison to data
 - DPMJET (with string fusion) stronger rise than data
 - HIJING 2.0 (no quenching)
 - Strong centrality dependent gluon shadowing
 - Fine-tuned to 0-5% dN/dη
 - Saturation models [12-14]
 - Some tend to saturate too much

Models incorporating a moderation of the multiplicity with centrality are favored by the data (as at RHIC)

ALICE Pb+Pb results

- Initial Conditions
- What is the extent of shadowing, saturation, CGC?
 - Particle multiplicity and its centrality dependence
- Time scales & reaction dynamics & transport properties (vs RHIC)
 - What is the space time evolution of the system? Decoupling size/time?
 - Bose-Einstein correlations
 - Does the system show collective effects?
 - Elliptic flow
- Properties of the medium
 - Parton energy loss: What are the microscopic processes?
 - <u>High-pt particle production (R_{AA})</u>, jets, heavy quarks
 - Multi-particle correlations
 - Initial temperature: Color screening of medium?
 - Quarkonium yields

Next talk by Christian Klein-Boesing

Space-time evolution: Freeze-out volume 16

PLB, 696 (2011), 328, arXiv:1012.4035

 $R_{out}R_{side}R_{long} \rightarrow V(Freeze-out)$ linear dependence on dNch/dη $V_{LHC} = 300 \text{ fm}^3 \sim 2 \text{ x } V_{RHIC}$

PLB, 696 (2011), 328, arXiv:1012.4035

R_{long} → Decoupling time τ_f linear dependence on dNch/dη^{1/3} τ_f (LHC) = 10-11 fm/c ~ 1.4 x τ_f (RHIC)

ALICE Pb+Pb results

- Initial Conditions
 - What is the extent of shadowing, saturation, CGC?
 - Particle multiplicity and its centrality dependence
- Time scales & reaction dynamics & transport properties (vs RHIC)
 - What is the space time evolution of the system? Decoupling size/time?
 - Bose-Einstein correlations
 - Does the system show collective effects?
 - Elliptic flow
- Properties of the medium
 - Parton energy loss: What are the microscopic processes?
 - <u>High-pt particle production (R_{AA})</u>, jets, heavy quarks
 - Multi-particle correlations
 - Initial temperature: Color screening of medium?
 - Quarkonium yields

Next talk by Christian Klein-Boesing

Two-particle angular correlations

$$R(\Delta \eta, \Delta \phi) = rac{
ho_{sib} -
ho_{ref}}{\sqrt{
ho_{ref}}} = rac{dN}{d\eta d\phi} \left(rac{
ho_{sib}}{
ho_{ref}} - 1
ight)$$

Elliptic flow (but also non flow structures) clearly visible

Flow via multi-particle cumulants

Borghini, Dinh, Ollitrault (2001)

$$v\{2\}^2 \equiv \langle \langle e^{2i(\phi_1 - \phi_2)} \rangle \rangle = v_2^2 + \delta_2$$

$$v_{2}\{4\}^{4} \equiv \langle \langle e^{2i(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4})} \rangle \rangle - 2\langle \langle e^{2i(\phi_{1}-\phi_{2})} \rangle \rangle = -v_{2}^{4} + \delta_{4}$$

Removes 2particle non-flow contribution

Due to high multiplicity, non flow contributions at LHC become less important

PRL, 105, 252302 (2010), arXiv:1011.3914

Integrated v₂: Comparison of two- and multi-particle methods as expected

Elliptic flow: centrality dependence

PRL, 105, 252302 (2010), arXiv:1011.3914

Integrated v_2 : 30% increase from 0.2 TeV (STAR) to 2.76 TeV (ALICE) Over all centrality classes, due to the increase of $\langle p_T \rangle$

Elliptic flow: centrality dependence

Increase well within the range of viscous hydro predictions

Elliptic flow: p_t - dependence

PRL, 105, 252302 (2010), arXiv:1011.3914

Little change between 0.2 TeV (STAR) and 2.76 TeV (ALICE) Consistent with expectations from ideal hydro (Eskola, Heinz).

Conclusions & Summary

- Charged particle multiplicity increased over RHIC by about a factor 2
 - Energy density is at least 3 times larger
 - Centrality dependence is very similar
 - Constrains models
 - Saturation models tend to be too low
 - Initial state gluon saturation weaker than expected?
- Freeze-out volume (central): V(LHC) ~ 300fm³ ~ 2 x V(RHIC)
- Decoupling time (central): $\tau_f(LHC) \sim 10-11$ fm/c ~ 1.4 x $\tau_f(RHIC)$
- Elliptic flow
 - p_t-dependence: Same for all centrality classes studied
 - Integrated v_2 : 30% increase over RHIC
 - Can by caused by radial flow in ideal hydro (needs PID test)
 - Can be accommodated by viscous hydro

- Ongoing (related) analyzes
 - Detailed studies of flow/non-flow (yes, still more methods)
 - Flow at high p_t
 - Directed flow and other harmonics
 - Event characterization using two-particle correlations
 - E-by-E fluctuations
 - Chiral magnetic effect studies
 - Centrality dependence of pion HBT
 - ...

PID, PID, PID, PID

Published physics results in Pb+Pb

- Multiplicity
 - 0-5% central: PRL, 105, 252301 (2010), arXiv:1011.3916
 - Centrality dependence: PRL, 106, 032301 (2011), arXiv:1012.1657
- Bose Einstein correlations
 - 0-5% central: PLB, 696 (2011), 328, arXiv:1012.4035
- Elliptic flow
 - $_{-}$ Centrality and p_{$_{+}$} dependence: PRL, 105, 252302 (2010), arXiv:1011.3914
- High pt charged hadron suppression
 - Central + peripheral R_{AA} with constructed reference:
 PLB, 696 (2010), 30, arXiv:1012.1004