

Results with hard probes - CMS -

Christof Roland/ MIT For the CMS Collaboration

LHC Physics Center at CERN HI at the LHC: a first assessment 4th March, 2011

• For rare processes, this is 'equivalent' to ~300 nb⁻¹ of p+p

LPCC: HI at the LHC

4 March 2011

DiMuon Trigger

- Level-1: 2 hits in the Muon chambers
- HLT: 2 reconstructed tracks in the muon chambers with $p_T > 3GeV/c$
- ~94% efficient for Z-> $\mu\mu$

Jet Trigger

- Level-1: Single Jet 30 GeV (uncorrected energy)
- HLT: Single Jet 50 GeV (bkgd subtracted uncorr. energy)
- Fully efficient for corrected energy above 100 GeV

Minimum Bias Trigger

- HF or BSC firing in coincidence on both sides
- 97+/-3% efficient

Collision Rate: 1-210 Hz, Jet50U Rate: < 1 Hz

Centrality Determination

Events are classified according to the percentile of the Pb+Pb inelastic cross section based on total deposited HF energy

Probing the initial state

- The production rates for hard probes strongly depend in the initial state of the collision
 - Choice of PDF
 - Nuclear shadowing
 - Saturation effects
 - Does collision scaling hold?
- Start this program with a measurement of the Z⁰ boson
 - Clear experimental signature
 - Low Background
 - Does not interact with the medium

Submitted for publication: <u>http://arxiv.org/abs/1102.5435</u>

- 39 reconstructed Z⁰'s
 - 1 same-sign event in the Z⁰ mass range [30,120] GeV/c²
- Dimuon Mass resolution comparable to p+p

- Conclusion
 - Kinematic distributions are consistent with pQCD calculations
 - Within uncertainties, no violation of binarycollision scaling is observed

Probing the Medium

Menu du Jour:

- Reference measurements from pp
 - Charged hadron spectra as a reference for R_{AA}
- Two particle correlations
 - Ridge physics
- Jet quenching
 - Probe the medium with fully reconstructed dijets

Charged particle spectra IIII in pp at 900GeV and 7TeV

Charged particle spectra in pp

Jet triggered data sets are merged together to exploit the full recorded luminosity

Invariant Yield and x_T-Scaling

2.76 TeV pp Interpolation

Interpolation based on:

- p_T interpolation below 5 GeV/c
- linear combination of interpolation methods between 5-20 GeV/c
- x_T-scaling with NLO-based residual correction above 20 GeV/c

Total uncertainty:

– 7% (interp.) + 11% (lumi) = 13%

Two-Particle Correlations

Short-range (0< $|\Delta \eta|$ <1): Jet + Ridge

Near-side Associated Yield (Y) vs trigger p_T

Leading Jet Spectra

Shape of leading jet p_T spectrum not strongly modified compared to PYTHIA (spectra not corrected or deconvoluted)

Reference Distributions

- PYTHIA:
 - D6T tune
- PYTHIA + DATA:
 - PYTHIA dijet events embedded into real data background
 - modified isospin (²⁰⁸₈₂Pb)

Dijet Asymmetry Variable

Dijet selection:

- $|\eta_{jet}| < 2$
- Leading jet $p_T > 120 \text{GeV/c}$
- Subleading jet $p_T > 50 \text{GeV/c}$
- $-\Delta \phi_{1,2} > 2\pi/3$

Quantify dijet energy imbalance by asymmetry ratio:

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

- Removes uncertainties in overall jet energy scale
- The lower limit on pT,2 puts a pT-dependent upper limit on Aj

e.g. (120-50) / (120+50) = 0.41

Dijet Energy Imbalance

Dijet 'Balanced' Fraction

- Study charged particle distributions within jet cones
 - Use η reflected (η -> -η) reference cones for jet-by-jet subtraction of Pb+Pb underlying event
 - This avoids $\boldsymbol{\varphi}$ dependent variations due to elliptic flow
 - + Exclude $|\eta_{Jet}|$ < 0.8 and $|\eta_{Jet}|$ > 1.6
 - Study associated track distributions versus p_{T} and ΔR
 - Uncertainties in background subtraction limit this method to $p_T > 1$ GeV/c and $\Delta R < 0.8$

LPCC: HI at the LHC

- PYTHIA+HYDJET:
 - The leading jets show a fragmentation pattern of hard partons, i.e. large energy sum for high p_T particles

- PYTHIA+HYDJET:
 - The associated subleading jets show a softer fragmentation pattern with increasing A_i
 - The asymmetry in the calorimeter jet energies is reflected in the fragmentation pattern
 - The momentum balance in Pythia is carried by a third jet

- Data:
 - The leading jets also show a fragmentation pattern of hard partons, even for A_i>0.33

- Data:
 - The subleading jets also show softening of the fragmentation pattern with increasing A_j, i.e. lower jet energy

Hii

- Data:
 - The observed calorimeter jet imbalance is reflected in the fragmentation pattern into charged particles
 - This supports the interpretation that we can infer a momentum imbalance in the fragmenting partons from the calorimeter jet imbalance

- In dijet events with a large imbalance, A_i>0.33, we find significantly more energy in tracks below p_T of 4GeV/c at large ΔR
 - But, not nearly enough to restore the dijet balance

Calculate projection of p_T on leading jet axis and average over selected tracks:

$$\mathbf{p}_{\mathrm{T}}^{\parallel} = \sum_{\mathrm{Tracks}} -p_{\mathrm{T}}^{\mathrm{Track}} \cos\left(\phi_{\mathrm{Track}} - \phi_{\mathrm{Leading Jet}}\right)$$

This is calculated for all tracks with $p_T > 0.5$ GeV/c and $|\eta| < 2.4$ and also for tracks in various p_T ranges.

This allows us to see which p_T range carries the balance of the jet momentum.

Missing-p_T Results

Radial Dependence of MPT

LPCC: HI at the LHC

Jet Quenching Summary

- We observe a large dijet momentum imbalance, increasing with centrality.
 - Imbalance extends to highest jet energies measured (p_{T,1} > 200 GeV/c)
 - Imbalance in calorimeter measurement reflected also in the fragmentation pattern of the jets into high $p_{\rm T}$ charged hadrons
- The momentum balance is recovered by including tracks at low- p_T and at large angles from the jet
 - In data (but not PYTHIA) a large fraction of the balance is carried by tracks with $p_T < 2.0$ GeV/c and $\Delta R > 0.8$

Conclusions

- LHC energies bring new era to jet quenching studies:
 - unambiguous identification of both partners in copious, asymmetric dijets.
- This is just the beginning! Future studies:
 - detailed fragmentation functions
 - differential studies of jet quenching e.g. via
 - Z⁰/gamma-jet correlations,
 - multi-jet events
 - heavy flavor tagged jets
- We look forward to detailed theory comparison to our data!

Backup Slides

A_j broadening due to Fluctuations

Different Gaussian smearing

PYTHIA+HYDJET

- Apply ATLAS's selection on the smeared jets:
 - p_{T1} > 100 GeV, p_{T2} > 25 GeV, dphi > pi/2
 - GenJet p_T > 0 GeV
- Applying a gaussian smearing to PYTHIA we can reproduce the results of the Salam paper.

LPCC: HI at the LHC

.

Gaussian

Smearing

True dijet

 Gaussian smearing of the leading jet makes the Aj distribution wider

Select only Jets above p_T = 3GeV

- Adding many low p_T jets, smeared to higher p_T than the true away side jet, compresses the Aj distribution
 - Tested by adding the 0-3GeV jets in the analysis

- Balanced dijets + fluctuations can fake a wide Aj distribution
 - Needs a very large number (~100) of low p_T jets per event
 - Remember: dn/d η^{ch} ~6 in letal < 5 -> ~60 charged particles/event
 - And a very large σ (20GeV) for the smearing
 - based on a Gaussian fit to the low \mathbf{p}_{T} part of the ATLAS min bias jet spectrum
 - + ATLAS reports σ ~8 GeV for their background fluctuations

- The HYDJET A_j distribution is created by the same mechanism
 - The hard part of a central HYDJET event consists of ~300 unquenched PYTHIA events with p_T hat of ~7GeV
 - Low \textbf{p}_{T} jets smear the leading jets by superposition and cause a combinatorial problem

- PYTHIA embedded in real data, including all background fluctuations and resolution effects does not show a widened A_i distribution
 - A cross check with p_That = 30GeV embedded in a large min bias data sample gave an identical reference distributions
 - ALICE R_{AA} shows a strong hardon suppression at 5-10GeV
 - Low p_T jets seem to be strongly suppressed

Comparing the ATLAS and CMS dijet selection pT hat > 30 GeV

- With the higher jet thresholds used for the CMS paper we are less sensitive to background fluctuations
 - ATLAS 100/20, CMS: 120/50 for leading/sub-leading

- The large σ (20GeV) smearing is based on a Gaussian fit to the low $p_{\rm T}$ part of the ATLAS min bias jet spectrum
 - ATLAS reports σ ~8 GeV for their background fluctuations

20GeV smearing closure test

Event Selection

CMS PbPb √s _{NN} = 2.76 TeV	10 ³	(b) CMS PbPb $\sqrt{s_{NN}} = 2.76 \text{ TeV} = 10^3$
st lave hits	10 ²	t looon 10 ² 10 ² 10 ²
₩ ₩	10 	5 5000 1 10 10 10
00050 100 Sum HF energy (TeV)	1	00000000000000000000000000000000000000
Jet triggered events ($p_T^{uncorr} > 50 \text{ GeV}/c$)	149k	Pb Pb Pb Pb Pb
No beam halo, based on the BSC	148k	
HF offline coincidence	111k	
Reconstructed vertex	110K	107k good jet-triggered collision
Beam-gas removal	110K	
ECAL cleaning	107K	events after all selections
FICAL cleaning	107 K	

Event Selection

pp Spectra Backup

Scaling violation Correction

 \sqrt{s} and p_T dependence of x_T -scaling violation similar to NLO (for particles with $p_T > 8 \text{ GeV/c}$)

Using scaling violation from NLO, each measurement can be corrected to 2.76 TeV

Variation of ~7% between 3 independent estimates

Direct pT interpolation

Comparison to ALICE ref.

Direct pT interpolation

Evaluate empirical fits at fixed values of p_{T}

Fit 2nd-order polynomial to \sqrt{s} evolution (errors are statistical + systematic including lumi uncertainty)

Fit errors typically 5-10% until 15 GeV/c, where 0.9 TeV statistics is limiting

Agrees at 10% level with x_T -scaling technique in overlap region

Two Particle Backup

Direct comparison to RHIC results

• $|\Delta\eta|$ range: 2< $|\Delta\eta|$ <4 for CMS and 0.7< $|\Delta\eta|$ <1.7 for STAR

• Elliptic flow subtracted in STAR, whereas "upper limit" in CMS

Jet Backup

et Energy Scale and Resolution

 $\begin{array}{l} p_{T,1} > 100 \; GeV \\ p_{T,2} > 25 \; GeV \\ \Delta \phi_{1,2} > \pi/2 \\ |\eta_{jet}| < 2.8 \end{array}$

ATLAS Collaboration, "Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at sqrt(S_{NN})= 2.76 TeV with the ATLAS Detector at the LHC", *Phys. Rev. Lett.* **105** (2010) 252303, arXiv:1011.6182.

Δφ

Data-Driven Efficiency

Absolute Efficiency $0.0 < h\eta l < 0.8$, 0 - 10 Pct Centrality

Tracking Performance

Leading Jet p_T Dependence

Fractional imbalance varies little with leading jet p_T , though the present errors do not rule out a constant Δp_T

Track-Jet Correlation Result

LPCC: HI at the LHC