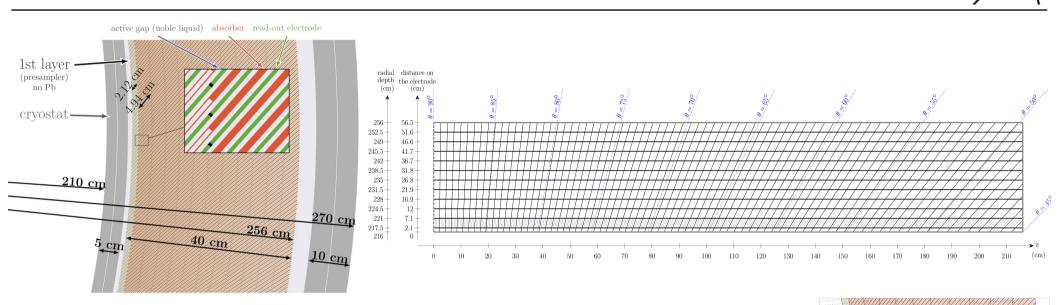
Tutorial #5: FCC-ee Noble Liquid Calorimeter Full Simulation

Brieuc François (CERN) FCCSW Hands on tutorial October 2022


What is tutorial #5 about?

- Detector requirements can be determined to a large extent via parametrized/fast simulations
- Full simulation is THE way to evaluate the performance of a detector design and optimize it
- Tutorial #5 is about running various aspects of the Full Sim framework used to optimize the FCC-ee noble liquid calorimeter
- You will learn how to
 - Generate particle gun events
 - > **Run** the calorimeter **reconstruction**
 - Evaluate performance
 - Apply corrections
 - Simulate noise
 - Modify the detector geometry
 - Profile the code (per module computation time)

> ...

Detector Geometry

. 0.16

0.14

0.12

0.08

0.04

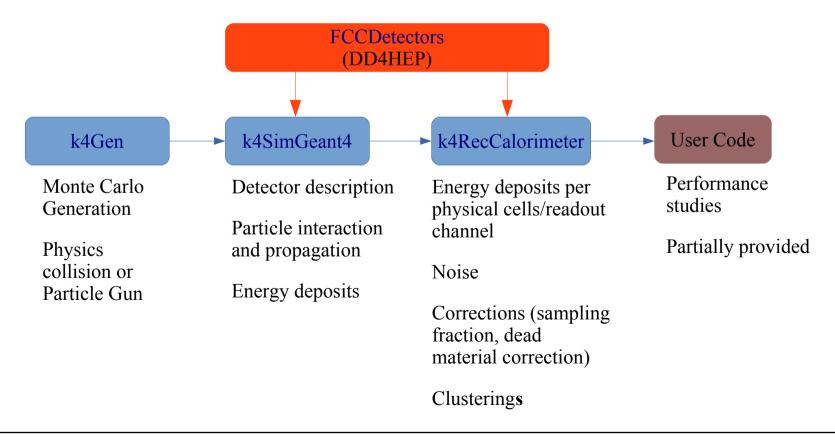
0.02

FCC-ee High Granularity Noble Liquid ECAL Barrel

- Sampling calorimeter
- 1536 straight inclined (50°) 1.8
 mm Pb absorber arranged in Φ
- > 1.2 2.4 mm LAr sensitive media
- > 40 cm deep (22 X_0)
- > $\Delta \theta = 10$ (2.5) mrad for regular (strip) cells, $\Delta \Phi \ge 8$ mrad, 12 longitudinal compartments ($\Delta r=3.5$ cm)
- Aluminum cryostat (5 cm inner, 10 cm outer)

Brieuc Francois

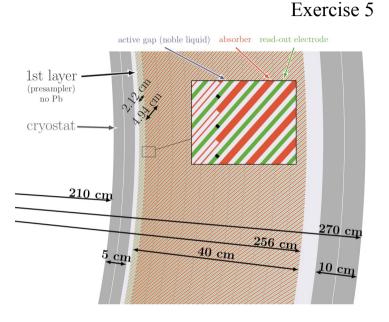
CERI

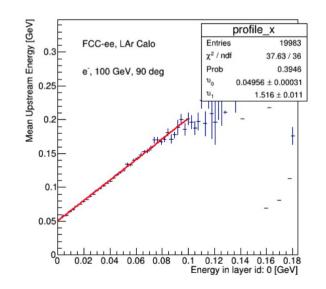

ECAL energy resolution $\frac{0.09}{\sqrt{\mathsf{E}}} \oplus 0.006$ (mm) -100 -200 20 Absorber 10² 10 -10 E_{Gen} [GeV] -20 Readout electrode -30 2160 2170 2180 2190 2200 2210 Radius (mm

Simple simulation and performance

CERN

Exercises 1 to 4


- Various Key4hep repositories will be at play
 - Produce 10 GeV γ gun events, run calorimeter reconstruction on it and produce energy resolution plots
 - Modify detector geometry xml to replace liquid Argon by liquid Krypton
 - > Assess the difference between the two scenarios and witness the need for correction



Applying corrections

- Some energy is deposited in non-sensitive regions
 - Simple scaling can recover the correct energy response but
 - Stochastic nature of the amount of energy deposited in a given region smears the energy response and degrades the energy resolution
 - With a finely segmented calorimeter, we can do better!
 - Strong correlation between energy in first(last) sensitive layer and energy deposited upstream(downstream)
- You will learn how to apply this event by event correction for energy deposited in dead (non sensitive) material and witness its effect
 - Adding new algorithms to the sequence
 - Modifying the content of the output collection

Going further

- > Apply **noise** and evaluate its impact
- > Generate π^0 events
 - > Those samples will be used for tutorial #6 (π^0/γ identification)
 - Make sure you follow tutorial #5 if you want to attend tutorial #6
- Learn how to exploit calorimeter longitudinal segmentation
 - Produce shower longitudinal energy profile
 - > Compare π^0 and γ profiles
- All in all you will
 - > Get a first contact with realistic detector optimization software
 - Set the ground to become an active contributor
- Exercise documentation with quiz: LINK

See you all on Friday morning!

Exercises 6, 7 and bonus

