Tutorial #5: FCC-ee Noble Liquid Calorimeter Full Simulation

Brieuc François (CERN) FCCSW Hands on tutorial October 2022

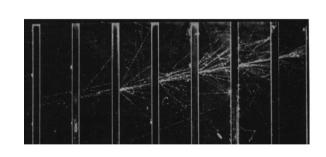
This tutorial

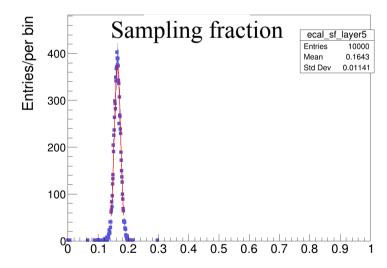
- This morning you will get the chance to run the Full Simulation of the High Granularity Noble Liquid Calorimeter for FCC-ee
- You will see how to
 - Generate particle gun events
 - Run the calorimeter reconstruction
 - Evaluate performance
 - Apply corrections
 - Simulate noise
 - > Modify the detector geometry
 - Profile the code (per module computation time)

۶ ...

> But first, some basics about calorimetry that will help you answering the quiz!

Calorimetry basics

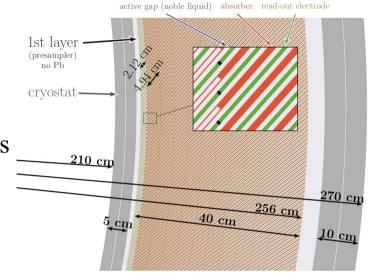

- Schematic explanation about sampling calorimetry
 - The EM cascade typically starts in the dense (non-sensitive) absorbers
 - What is read-out is the energy deposited by ionization in the Noble Liquid
 - > For a fully contained shower (neglecting electrodes):

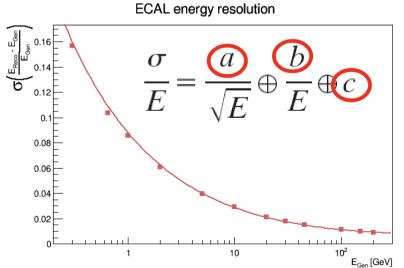

$$E_{\text{Tot}} = E_{\text{Absorber}} + E_{\text{Noble Liquid}}$$
Not measured

We can know, on average, the ratio between E_{Noble Liquid} and E_{Tot}, this is the sampling fraction (SF)

$$\succ E_{Tot} = E_{Noble Liquid} / SF$$

- > The ratio $\mathbf{E}_{\text{Noble Liquid}} / \mathbf{E}_{\text{Tot}}$ is a random variable \rightarrow smearing!
- The higher the sampling fraction the better the resolution





3

Calorimetry basics

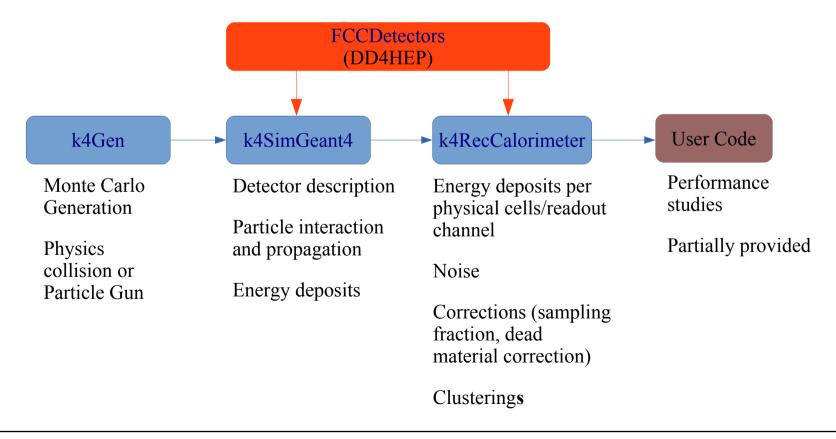
Inclined rectangular absorbers and readout electrodes

- Everything else filled with noble liquid
- Inner radius circumference smaller than the outer radius one

 \rightarrow consequence on the ratio between sensitive and non-sensitive material?

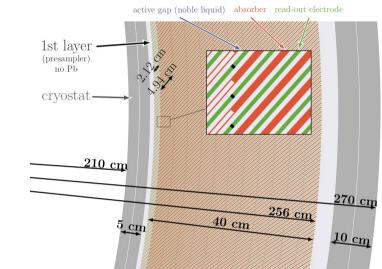
- Calorimeter energy resolution can be parametrized
 - a = sampling term: depends on the ratio sensitive/nonsensitive
 - b = noise term: linked to... the noise (electronics + pile up). Dominates at low energy
 - c = constant term: linked to detector non-uniformities, shower leakage, dominates at high energy

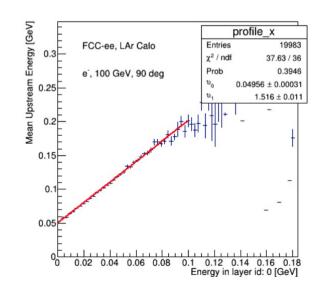
Time to get your hands dirty!



- > There are 6 exercises and a bonus exercise for advanced user
 Link to the tutorial introduction: here
 - > Don't rush, go at your own pace and take time to understand how the code works
 - i.e. avoid copy pasting everything without asking yourself what the commands do
 - > Every exercise has a quiz
 - Answers are provided (hidden by default) but try of course to find them yourself before to display the spoilers
 - It's ok if you don't do everything today, the tutorial will remain available if you want to finish it later
 - Make sure you read carefully instructions and do every step from every exercise otherwise some won't work (some exercises assume a given status of the code!)
 - Exception: 10 minutes before the end of the tutorial, make sure you jump to the exercise "Preparing for the next tutorial"
 - > This one should be self consistent
- Let's start: follow instructions from here
 - > Feel free to call us for any question, we will do our best to answer them

Simple simulation and performance




- Various Key4hep repositories will be at play
 - Produce 10 GeV γ gun events, run calorimeter reconstruction on it and produce energy resolution plots
 - Modify detector geometry xml to replace liquid Argon by liquid Krypton
 - > Assess the difference between the two scenarios and witness the need for correction

Applying corrections

- Some energy is deposited in non-sensitive regions
 - Simple scaling can recover the correct energy response but
 - Stochastic nature of the amount of energy deposited in a given region smears the energy response and degrades the energy resolution
 - With a finely segmented calorimeter, we can do better!
 - Strong correlation between energy in first(last) sensitive layer and energy deposited upstream(downstream)
- You will learn how to apply this event by event correction for energy deposited in dead (non sensitive) material and witness its effect
 - Adding new algorithms to the sequence
 - Modifying the content of the output collection

CER