MANCHESTER 1824

The University of Manchester

> The evolution of single-particle states along
> $\mathrm{N}=127$ using the $\mathrm{d}\left({ }^{212} \mathrm{Rn}, \mathrm{p}\right)^{213} \mathrm{Rn}$ reaction at the ISOLDE Solenoidal Spectrometer (ISS)

Daniel Clarke
ISOLDE Workshop and Users Meeting 2022

Single-particle evolution in nuclei

- Far from stability, shell closures have been shown to evolve for systems with imbalances of protons and neutrons
- Studies of light neutron-rich system have led to the discovery of new shell closures

T.Otsuka and D. Abe Prog. In Particle and Nuclear Physics 59425 (2007)

Single-particle evolution - heavy nuclei

- In heavier stable nuclei trends have also been states fill with nucleons

observed, particularly in high-j states as other high-j
- Studying chains of isotopes/isotones near closed shells have pointed to the inclusion of a tensor interaction to explain systematics

Otsuka et al. Phys. Rev. Lett. 95, 232502 (2005)

D.K. Sharp et al, Phys.Rev.C 87014312 (2013)

Single-particle evolution along $\mathrm{N}=126$

- Radioactive beams at HIE-ISOLDE allow new closed-shell systems to be studied
- Studies can be extended to $\mathrm{N}=126$ isotones
- Currently, spectroscopic information on states up to $\mathrm{Z}=84\left({ }^{211} \mathrm{Po}\right)$ is known
- The location of nuclei with one neutron outside the $\mathrm{N}=126$ closed shell makes them ideal testing grounds for modern shell-model calculations
- Aim is to probe the strength of neutron orbitals in this region which will be interacting with protons in the $\pi \mathrm{h}_{9 / 2}$ orbital

Direct transfer reactions - inverse kinematics

- Information:
- Yields - cross sections
- θ - angular momentum
- Proton energy - excitation energy of nucleus.
- $\mathrm{d}\left({ }^{212} \mathrm{Rn}, \mathrm{p}\right)^{213} \mathrm{Rn}:$
- Need to consider lab to CM transformations
- Problems:
- Kinematic compression - reduces energy difference between states
- Kinematic shift - broadens peaks

ISOLDE Solenoidal Spectrometer (ISS)

- Potential solution using a solenoid (2.5 T).
- Particles from target follow helical orbits and return to the axis after one cyclotron period

$$
T_{c y c}=\frac{2 \pi r}{v_{\perp}}=\frac{2 \pi m}{q B}
$$

- Measure protons in position-sensitive array
- Position, $\mathrm{E}_{\mathrm{lab}} \propto \mathrm{E}_{\mathrm{cm}}$.
- No compression in the solenoid - better resolution

$$
E_{\mathrm{cm}}=E_{\mathrm{lab}}+\frac{m}{2} V_{\mathrm{cm}}^{2}-\frac{m V_{\mathrm{cm}} z}{T_{\mathrm{cyc}}}
$$

HIE-ISOLDE

Experiment performed using HIE-ISOLDE:

- Protons from the PSB (1.4 GeV) impinged on a heated UC_{x} target
- VADIS ion-source
- Transfer line between ion source and target cooled to capture reactive products
$\mathrm{d}\left({ }^{212} \mathrm{Rn}, \mathrm{p}\right)^{213} \mathrm{Rn}$ reaction:
- $7.63 \mathrm{MeV} / \mathrm{u}$

https://hie-isolde-project.web.cern.ch/hie-isolde-project

Preliminary data analysis
MANCHESTER

Gating on EBIS-on time
\qquad

Subtracting EBIS-off time
θ_{cm} and z cuts

Preliminary excitation energy spectrum

- Identified 17 states in ${ }^{213} \mathrm{Rn}$ up to $\sim 4 \mathrm{MeV}$
- Projected excitation energies
- Regions in z map to $\theta_{\text {cm }}$
- Extracted yields of states
- Measured cross sections

Preliminary angular distributions

- PTOLEMY used to calculate angular distributions
- Measured angular distributions compared to calculations and assignments made for states up to 2.5 MeV

Energy / keV	L	$n l \boldsymbol{j}$	S
0	4	$2 g_{9 / 2}$	$1.00(2)$
$681(16)$	6	$1 \mathrm{i}_{11 / 2}$	$2.26(23)$
$973(1)$	2		$0.31(3)$
$1311(5)$	0	$4 \mathrm{~s}_{1 / 2}$	$0.27(2)$
$1462(10)$	2		$0.08(1)$
$1758(2)$	2		$0.27(1)$
$1937(4)$	0	$4 \mathrm{~s}_{1 / 2}$	$0.37(1)$
$2132(4)$	0	$4 \mathrm{~s}_{1 / 2}$	$0.22(1)$
$2380(3)$	2		$0.22(1)$
$2551(5)$	2		$0.17(1)$

- Relative spectroscopic factors extracted by comparing with DWBA calculations
- Summed strength should equal one for a completely empty orbital as is outside a closed shell

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\exp }=S_{i j}\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{DWBA}}
$$

- *Normalized to the $2 \mathrm{~g}_{\mathrm{o} / \mathrm{I}}$ ground state
- New states identified in ${ }^{213} R n$
- Preliminary spin-parity assignments have been made up to 2.5 MeV
- Extracted relative spectroscopic factors for these states
- Some work to do to extract spectroscopic information for high-lying states above 2.5 MeV
- Determine effective single-particle energy centroids and characterise how they are changing along $\mathrm{N}=127$
- Compare to modern shell-model calculations

Kinematic Compression:

- In IK, the difference in ejectile energy for two states separated by a given excitation energy are compressed together more than in NK.

$$
\eta_{\mathrm{cm}}=\theta_{\mathrm{cm}}-\pi
$$

- Both NK and IK experience this with increasing CoM angle.
- Mass ratio means the affect is worse for IK and states in NK are less affected at small θ_{cm} whereas IK are affected much more at η_{cm}.

Kinematic Shift:

- Gradient of proton energy with angle is greater in the inverse case when compared to NK
- Finite angular acceptance allows detection of a range of energies. Peaks are broader in IK

B P Kay et al 2012 J. Phys.: Conf. Ser. 381012095

Preliminary angular distributions

MANCHESTER

Solid angle corrections

MANCHESTER

Im

Resolution

- Calculations for the ground state
-Intrinsic Si energy resolution was $45-50 \mathrm{keV}$ for alphas
- Target-energy loss:
- CD2 Stopping power $\approx 160 \mathrm{MeV} / \mathrm{mgcm}^{2}$
- Target thickness $\approx 125 \mu \mathrm{~g} / \mathrm{cm}^{2}$
- Beam entering $=1618 \mathrm{keV}$, Beam leaving $\approx 1598 \mathrm{MeV}$
- 74 keV proton energy difference in lab => $\mathbf{1 4 5} \mathbf{~ k e V}$ excitation difference at $\theta_{C M}=40^{\circ}$
- Beam spot size $\approx 3 \mathrm{~mm}$:
- Particles ejected above the beam axis due to beam spot size return to axis at a higher z than those on axis.
- Beam energy spread of $\pm 0.4 \%=>7.63(3) \mathrm{MeV} / \mathrm{u}$:
- $\mathrm{E}_{\text {Beam }}=7.60=>7.66 \mathrm{MeV} / \mathrm{u}$
- $\theta_{\mathrm{CM}}=10^{\circ}$; proton $\Delta \mathrm{E}_{\mathrm{lab}}=12 \mathrm{keV}$
- $\theta_{\mathrm{CM}}=40^{\circ}$; proton $\Delta \mathrm{E}_{\mathrm{lab}}=50 \mathrm{keV}$

Contribution to energy resolution	At 10 degrees CM (keV)	At 40 degrees CM (keV)
Target-energy loss	50	145
Intrinsic silicon energy	50	50
Position resolution 1mm	15	15
Beam spot 3mm	88	8
Beam energy spread \pm 0.4%	12	50
Total in quadrature	$\mathbf{1 6 2}$	

