# High resolution laser spectroscopy of neutron rich tellurium

and a general overview of the year at COLLAPS



## Tellurium physics case

|            |                                                                                  |                         |                                                    | 1.4 S                    | ≈0.5 S                   | ≈0.8 S                    | 1.2 S                     | 3.3 S                   | 3.14 S            | 4.2 S               | 2.84 S     | 32 S            | 40 S                     | 1.51 M          | 1.6 M                   | 6.5 M            | 17 M                   | 24 M                | 13.1 M              | 1.28 H             | 1.45 M      | 4.41 H      | 3.39 M         | STABLE<br>100%             | 19.12 H             | 13.57 D              | 17.28 M                  | 5.984 H                    |
|------------|----------------------------------------------------------------------------------|-------------------------|----------------------------------------------------|--------------------------|--------------------------|---------------------------|---------------------------|-------------------------|-------------------|---------------------|------------|-----------------|--------------------------|-----------------|-------------------------|------------------|------------------------|---------------------|---------------------|--------------------|-------------|-------------|----------------|----------------------------|---------------------|----------------------|--------------------------|----------------------------|
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            | _                                                                                |                         | 119Ce<br>≈0.2 S                                    | 120Ce<br>≈0.35.5         | 121Ce<br>1.1 S           | 122Ce                     | 123Ce<br>3.8 S            | 124Ce<br>6 S            | 125Ce<br>10.2 S   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            | L                                                                                | =                       | 52                                                 | $\rightarrow$            | € 10,50%<br>@≈10%        | 01.                       | Sn                        | e: 10 <u>0 (186</u>     | 20                | e: 100.00%          |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         | 118La<br>≈1 S                                      | 119La<br>≈2 S            | 120La<br>2.8 S           | 121L6<br>5.3 S            | 122La<br>8.6 S            | 123La<br>17 S           | 124Le<br><1 \$    |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     | e: 100.00%         |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            | $\begin{array}{l} \varepsilon : 100.00\% \\ \varepsilon p > 15.00\% \end{array}$ | е: 100.00%<br>ф: 3.00%  | <ul><li>€: 100.00%</li><li>€α &gt; 0.00%</li></ul> | е: 100.00%<br>«р         |                          | e: 100.00%                | e: 100.00%                |                         |                   | e: 100.00%          | e: 100.00% |                 | e: 100.00%               | e: 100.00%      | e: 100.00%              | 24               | €: 100.00%             | 24                  | c 100.00%           |                    | 10          | 7           |                |                            |                     |                      |                          |                            |
|            | 0.53                                                                             | 7.4 5                   | SO                                                 | toi                      | bes                      | 119Ca<br>43.0 s<br>2      | 25                        | ac                      | ces               | Sil                 | ole        | • W             | <b>it</b> r              | 12 s<br>6. H    | OL                      | 1290<br>32.0     | PS                     | 3 83                | LZ                  | <b>e</b> -         | 13          | 'Te         | 36Cs<br>1.04 D |                            |                     |                      |                          |                            |
|            | e: 99.96%<br>ep: 8.70%                                                           | τ. 100.00%<br>ερα 0.07% | ₹ 100.00%<br>@:2.80%                               | 7: 100.00%               | ε: 100.00%<br>εp < 0.04% | 110%                      | e: 100.00%<br>ea: 2.0E-5% | 1.100.00%               | a: 100.00%        | 4: T00.00%          | 1.00%      | <: 100.00%      | 7: 100.00%               | 4: 100.00%      | * 100.00%               | 4: 100.00%       | ε: 98.40%<br>β-: 1.60% | e: 100.00%          | ε: 98.13% β-: 1.87% | 1007/1             |             | β-: 100.00% | β 100.00%      |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          | 1251            | «: 100.00%              |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
| az 0.10%   | az 1.2E-3%                                                                       | a: 3.3E-7%              | € 100.00%<br>Ф                                     | < 100.00%                | <: 100.00%               | < 100.00%                 | < 100.00%                 | ε: 100.00%<br>ε: 51.00% | < 100.00%         | 4: 100.00%          | «: 100.00% | < 100.00%       | : 100.00%                | <: 100.00%      | ε: 52.70%<br>β-: 47.30% | 126Te            | ε: 6.90%               | 128Te               | 129Te               | 130Te              | 131Te       | 132Te       | 133Te          | 134Te                      | 135Te               | β-1: 7.14%           | β-1100.00%<br>β-n: 5.56% | β-: 100.00%<br>β-n: 10.00% |
| 18.6 S     | 19.3 S                                                                           | 2.0 M                   | 1.7 M                                              | 15.2 M                   | 5.8 M                    | 2.49 H                    | 62 M                      | 6.00 D                  | 16.05 H           | >2.2E+16 ¥<br>0.09% | 19.16 D    | STABLE<br>2.55% | >9.2E+16 Y<br>0.89%      | STABLE<br>4.74% | STABLE<br>7.07%         | STABLE<br>18.84% | 9.35 H                 | 8.8E+18 Y<br>31.74% | 69.6 M              | >5E+23 Y<br>34.08% | 25.0 M      | 3.204 D     | 12.5 M         | 41.8 M                     | 19.0 S              | 17.63 S              | 2.49 S                   | 1.4 S                      |
| 1095b      | •p<br>1105b                                                                      | 111Sb                   | 112Sb                                              | 113Sb                    | 114Sb                    | 115Sb                     | €: 25.00%<br>116Sb        | 117Sb                   | €: 2.06%<br>1185b | 1195b               | 120Sb      | 121Sb           | 122Sb                    | 123Sb           | 124Sb                   | 125Sb            | 126Sb                  | 127Sb               | 1285b               | 129Sb              | 130Sb       | 131Sb       | 132Sb          | 133Sb                      | 134Sb               | β-n: 1.31%<br>1355b  | β-n: 2.99%               | β-n: 6.30%                 |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
| 1085n      | 109 Sn                                                                           | 110Sn                   | 1115n                                              |                          | 113Sn                    | 114Sn                     |                           |                         |                   |                     |            |                 | c: 2.41%<br>121Sn        |                 | 123Sn                   | 124Sn            | 125Sn                  | 126Sn               | 127Sn               | 128Sn              | 1295n       | 130Sn       | 131Sn          | 132Sn                      | 133Sn               | β-n: 22.00%<br>134Sn | β-n: 16.30%<br>1355n     | β-n: 49.00%<br>136Sn       |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
| 107In      | 108In                                                                            | 109In                   | 110In                                              |                          | 112In                    |                           |                           |                         |                   |                     |            |                 | 120In                    | 121In           | 122In                   | 123In            | 124In                  | 125In               | 126In               | 127In              | 128In       | 129In       | 130In          | 131In                      | β-n: 0.08%<br>132In | β-n: 17.00%<br>133In | β-n: 21.00%<br>134In     | β-n: 30.00%<br>135In       |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 | 0                        | hc              | O PA                    | <i>i</i> nh      |                        | c124                | o r                 | 8-ns 0.03%         | β-h < 0.05% | β-n: 0.25%  | β-a: 0.93%     | р-на 2.00%<br><b>+ ю.с</b> | β-n: 6.30%          | β-n: 85.00%          | β-n: 65.00%              |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 | β-: 100.00%              | J-: 100.00%     | β-: 100.00%             |                  | β-: 100.00%            | β-: 100.00%         | p-: 100.00%         | 103                | β-:100.00%  | <b>S</b> P  |                | β-: 100.00%                | <b>J</b> 3C         | UP                   | ' <b>y</b> •             |                            |
|            |                                                                                  | 107Ag<br>Stabif         | 108Ag<br>2.37 M                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 | β-: 100.00%             |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          | 110Pd<br>STABLE           |                           |                         |                   |                     |            |                 | ●Pd<br>4.3 S             | SK              | oin                     | Sopa .           |                        |                     |                     |                    |             |             |                | p n                        |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          | β-: 100.00%     | β-: 100.00%             | β-: 100.00%      |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         | 106Rh<br>29.80 S                                   |                          | 108Rh<br>16.8 S          | 109Rh<br>80 S             |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 | β-: 100.00%              | β-: 100.00%     | loc                     | trc              |                        | 50                  | no                  | tic                | m           | on          | no             | nto                        |                     |                      |                          |                            |
|            |                                                                                  | 104Ru<br>STABLE         | 105Ru<br>4.44 H                                    |                          |                          |                           |                           |                         |                   |                     |            |                 | 115Ru<br>740 MS          | 11<br>400 MS    | BOO MS                  | 123 MS           | 1914<br>>150 NS        | ag                  | пс                  | ul                 |             |             |                | 1113                       |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  | 103Tc<br>54.2 S         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          | 115Tc<br>73 M2  | 116Tc                   |                  | 118Tc                  |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 | β- <b>0</b> 0.00%<br>β-n | C               | ITTE                    | ere              | nt                     | ial                 | ch                  | ar                 | ge          | ra          | dII            |                            |                     |                      |                          |                            |
|            |                                                                                  |                         |                                                    |                          |                          |                           |                           |                         |                   |                     |            |                 |                          | 114Mo<br>80 MS  | 115Mo<br>60 MS          |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |
| -: 100.00% | β-: 100.00%                                                                      | β-: 100.00%             | β-: 100.00%                                        | β-:100.00%<br>ki/File∙Nu | β-: 100.00%              | β-: 100.00%<br>stitched p | β-: 100.00%               |                         |                   |                     |            |                 |                          |                 |                         |                  |                        |                     |                     |                    |             |             |                |                            |                     |                      |                          |                            |





# The physics case of <sup>135</sup>Te



- (simple shell model picture): single neutron over closed 82 core
- Single particle like for tin: doubly magic + 1n
- Otherwise: Contribution from valence protons
- ightarrow Should be decently described by theory

But: Large deviation for tellurium



# 11/2 isomeric chains

- Long chains of 11/2 isomeric states in Cd, Sn, Te
- Single unpaired neutron in h11/2 shell
- Parity defining orbital → pure wave function
- Cd, Sn completely different!

Goal: Compare effect of two valence protons of tellurium to two holes of cadmium





### Charge radii at the shell closure

N = 82 shell closure

 $\rightarrow$  "kink" in charge radius

Any "quenching"?

Goal: Compare "kink" in charge radius to Sn, Xe, Cd...



https://cds.cern.ch/record/1601818/files/INTC-CLL-011.pdf



#### **COLLAPS** beamline



Photographic service CERN, 237-04-80



#### **COLLAPS** beamline

Widevassoutrageneent principle:

- 1) Covientaprige entertayn and i dio popule cho coaliterainig
- 2) Fokused sousing la toaoptive bladet Edvidaser
- 3) insensative torisobacic viandamigeaeicomange and scan beam energy
- 4) Measure fluorescence in optical detection





#### Tellurium atomic level scheme



Why choose the 214 nm transition?

- (Simulated) 5p<sup>4</sup> <sup>3</sup>P<sub>2</sub> ground state most populated in charge exchange process (>50%)
- Highly sensitive to "nuclear signature"
  - Ground state sensitive to quadrupole moment
  - Upper state sensitive to dipole moment
  - S→P transition sensitive to charge radii

• Challenge: Laser system to produce 214 nm light



#### Laser setup for 214 nm



→ Stable operation during the entire run



#### Overview of the run



→ Measured <sup>112</sup>Te - <sup>136</sup>Te with 10 isomers

→ 328 (!) usable spectra in total



#### **Curiosity: Copper neutron converter**



- Shoot on converter → steer p-beam "down"
- Confusion over which way is up/down
- ➔ Ended up hitting the copper blocks instead of the real converter

A "makeshift spallation neutron source" for neutron-rich Te isotopes at ISOLDE

Ulli Köster, Jochen Ballof<sup>1</sup>, Cyril Bernerd<sup>2</sup>, Katerina Chrysalidis<sup>3</sup>, Reinhard Heinke<sup>3</sup>, Bruce Marsh<sup>3</sup>, João Pedro Ramos<sup>4</sup>, Edgar Reis<sup>3</sup>, Sebastian Rothe<sup>3</sup>, Simon Stegemann<sup>3</sup>, Liss Vazquez Rodriguez<sup>3</sup>, COLLAPS collaboration

<sup>1</sup> CERN, present address MSU
 <sup>2</sup> KU Leuven - CERN
 <sup>3</sup> CERN
 <sup>4</sup> CERN, present address: SCK CEN



https://cds.cern.ch/record/2759094



 $\rightarrow$ 

## Spins

| <sup>112</sup> Te<br>z: 52 n: 60<br>Jπ: 0+<br>T <sub>1/2</sub> :2.0 m 0.2<br>decay ec β+<br>100% | <sup>113</sup> Te<br>z: 52 n: 61<br>Jπ: (7/2+)<br>T <sub>1/2</sub> :1.7 m 0.2<br>decay ec β+<br>100% | <sup>l4</sup> Te<br>:: 52 n: 62<br>lπ: 0+<br>͡ <sub>1/2</sub> :15.2 m 0.7<br>Jecay ec β+<br>00% | <sup>115</sup> Te<br>z: 52 n: 63<br>Jπ: 7/2+<br>T <sub>1/2</sub> :5.8 m 0.2<br>decay ec β+<br>100%                                | <sup>116</sup> Te<br>z: 52 n: 64<br>Jπ: 0+<br>T <sub>1/2</sub> :2.49 h 0.04<br>decay ec β+<br>100% | <sup>117</sup> Te<br>z: 52 n: 65<br>Jπ: 1/2+<br>T <sub>1/2</sub> :62 m 2<br>decay ec β+<br>100%<br>β+ 25% | <sup>118</sup> Te<br>z: 52 n: 66<br>Jπ: 0+<br>T <sub>1/2</sub> :6.00 d 0.02<br>decay ec 100%             | <sup>119</sup> Te<br>z: 52 n: 67<br>Jπ: 1/2+<br>T <sub>1/2</sub> :16.05 h 0.05<br>decay ec β+<br>100%<br>8+ 2.05% | <sup>120</sup> Te<br>z: 52 n: 68<br>Jπ: 0+<br>T <sub>1/2</sub> :stable                          | <sup>121</sup> Te<br>z: 52 n: 69<br>Jπ: 1/2+<br>T <sub>1/2</sub> :19.17 d 0.04<br>decay ec β+<br>100% | <sup>122</sup> Te<br>z: 52 n: 70<br>Jπ: 0+<br>T <sub>1/2</sub> :stable                          | <sup>123</sup> Te<br>z: 52 n: 71<br>Jπ: 1/2+<br>T <sub>1/2</sub> : 9.2 10 <sup>16</sup> y<br>decay ec 100% | <sup>124</sup> Te<br>z: 52 n: 72<br>Jπ: 0+<br>T <sub>1/2</sub> :stable                                         |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| <sup>125</sup> Te<br>z: 52 n: 73<br>Jπ: 1/2+<br>T <sub>1/2</sub> :stable                         | <sup>126</sup> Te<br>z: 52 n: 74<br>Jπ: 0+<br>T <sub>1/2</sub> :stable                               | <sup>127</sup> Te<br>z: 52 n: 75<br>Jπ: 3/2+<br>T <sub>1/2</sub> :9.35 h 0.07<br>decay β- 100%  | <sup>128</sup> Te<br>z: 52 n: 76<br>Jπ: 0+<br>T <sub>1/2</sub> : 7.7 10 <sup>24</sup> y 0.4<br>10 <sup>24</sup><br>decay 2β- 100% | <sup>129</sup> Te<br>z: 52 n: 77<br>Jπ: 3/2+<br>T <sub>1/2</sub> :69.6 m 0.3<br>decay β- 100%      | $^{130}$ Te<br>z: 52 n: 78<br>Jπ: 0+<br>T <sub>1/2</sub> : 0.79 10 <sup>21</sup> y<br>decay 2β- 100%      | <sup>131</sup> Te<br>z: 52 n: 79<br>Jπ: 3/2+<br>T <sub>1/2</sub> :25.0 m 0.1<br>decay β- 100%<br>β- 100% | <sup>132</sup> Te<br>z: 52 n: 80<br>Jπ: 0+<br>T <sub>1/2</sub> :3.204 d<br>0.013<br>decay β- 100%                 | <sup>133</sup> Te<br>z: 52 n: 81<br>Jπ: (3/2+)<br>T <sub>1/2</sub> :12.5 m 0.3<br>decay β- 100% | <sup>I34</sup> Te<br>z: 52 n: 82<br>Jπ: 0+<br>T <sub>1/2</sub> :41.8 m 0.8<br>decay β- 100%           | <sup>iss</sup> Te<br>z: 52 n: 83<br>Jπ: (7/2-)<br>T <sub>1/2</sub> :19.0 s 0.2<br>decay β- 100% | <sup>36</sup> Te<br>z: 52 n: 84<br>Jπ: 0+<br>Γ <sub>1/2</sub> :17.63 s 0.09<br>Jecay β- 100%<br>β- n 1.31% | <sup>137</sup> Te<br>z: 52 n: 85<br>Jπ: (7/2-)<br>T <sub>1/2</sub> :2.49 s 0.05<br>decay β- 100%<br>β- n 2.99% |

from IAEA - Nuclear Data Section (on 16/11/2022)

Ideal case  $\rightarrow$  Just count peaks

More complex cases:

- Peaks overlapping
- Isomers present
- Limited statistics
- Peak count not unambiguous for high spin states





#### Spins

<sup>113</sup>Te, **1**/2<sup>2</sup>

This graph contained unpublished data and was therefore removed to comply with the open access policy of the COLLAPS collaboration

→ Spin 7/2 doesn't fit at all (with reasonable parameters)

 $\rightarrow$  Maybe Spin 11/2?

Further analysis required...



#### Nuclear moments



# Get hyperfine parameters A,B from fit

 $\rightarrow$  Related to nuclear moments

$$\Delta \nu = \frac{A}{2}C + B \frac{\frac{3}{4}C(C+1) - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)}$$

$$A = \frac{\mu_I B_e(0)}{hIJ} \qquad \qquad B = \frac{eQ_s}{h} \frac{\partial^2 V}{\partial z^2}$$

B<sub>e</sub>(0) from NMR reference

https://doi.org/10.1103/PhysRev.89.923

• Field gradient from theory = 5.83 x 10<sup>22</sup> V/m<sup>2</sup>



#### Dipole moment of N = 83



N = 82 + 1

"true" single particle state for Sn

Higher Z  $\rightarrow$  positive contribution from valence protons

add. data and theory from https://doi.org/10.1103/PhysRevC.102.051301



#### Quadrupole moment of N = 83



 $\rightarrow$  N = 83 "mystery": Everything is well described in the end...

add. data and theory from https://doi.org/10.1103/PhysRevC.102.051301



#### 11/2<sup>-</sup> dipole moment

This graph contained unpublished data and was therefore removed to comply with the open access policy of the COLLAPS collaboration





- Single unpaired neutron in  $1h_{11/2}$  orbital
- "pure" state because only orbital with negative parity

Expected qualitatively similar trend to Cadmium

 $\rightarrow$  This did not turn out to be true

#### 11/2<sup>-</sup> quadrupole moment

This graph contained unpublished data and was therefore removed to comply with the open access policy of the COLLAPS collaboration

- Expected similar trend as Cd
- $\rightarrow$ Kind of correct

Linear trend as predicted by simple seniority scheme

$$\langle Q \rangle = \langle Q_{sp} \rangle \left[ 1 - 2 \frac{n-1}{2j-1} \right]$$

Important difference: Te flattens out at high N



#### Isotope shift & charge radii

This graph contained unpublished data and was therefore removed to comply with the open access policy of the COLLAPS collaboration

 $\delta v^{126,132}$ 



$$\delta\nu^{AA'} = K_{MS} \cdot \frac{M_{A'} - M_A}{M_A M_{A'}} + F \delta \langle r_c^2 \rangle^{AA'}$$



#### Charge radii

This graph contained unpublished data and was therefore removed to comply with the open access policy of the COLLAPS collaboration



## Charge radii

#### Experiment

#### Quenching prediction

This graph contained unpublished data and was therefore removed to comply with the open access policy of the COLLAPS collaboration



→ No "quenching"



### Other projects at COLLAPS in 2022



- Offline setup in Bd. 275
- Basically, a copy of COLLAPS + ion source/mass separator
- First ion beam trough in October
- Waiting for laser

→Test platform for new techniques First case: ROC





#### **ROC** (Radioactive detection after optical pumping and state selective charge exchange)





#### **ROC detector test**



- Test production and detector efficiency for <sup>54,53</sup>Ca
- Single tape station on LA1
- Part of TISD 1.7 GeV test
- $\rightarrow$ 4 counts per proton pulse for <sup>54</sup>Ca





# Thank you











Federal Ministry of Education and Research





#### Not included slides following – proceed at own risk!



#### Single particle like states

- 1) N = 83  $\rightarrow$  N = 82 (magic) +1n
- 2)  $11/2^{-}$  isomer chain
  - → Single unpaired neutron in  $1h_{11/2}$  orbital
  - → "pure" state because only orbital with negative parity



Hagino, K., Maeno, Y. A nuclear periodic table. Found Chem 22, 267–273 (2020)

#### Charge radii





### <sup>133</sup>Te – the special one



- Ground state Racah fixed
- Isomer only two peaks fixed to each other
- B ratio fixed to value from 115,135
- →Tried various starting parameters (swapping peaks etc)
- → Either converged to same value or not at all



#### ISOLDE setup

- UCn target on HRS target station
- Te mass marker for stable isotopes\*
- RILIS (also on 214 nm transition)
- Bunching and cooling with ISCOOL

\* Ended up being Thallium due to ambiguous handwriting



#### Overview of an atomic spectrum





CERN.