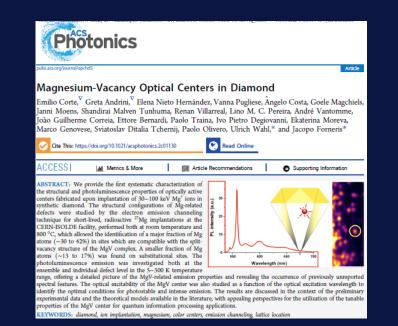
Magnesium-vacancy quantum defects in diamond

U. Wahl¹, A.R.G. Costa², G. Magchiels², J. Moens², S.M. Tunhuma², R. Villarreal², J.G. Correia¹, G. Andrini³, V. Pugliese⁴, E. Nieto Hernández³, E. Corte³, S. Ditalia Tchernij³, E. Bernardi⁵, I.P. Degiovanni⁵, E. Moreva⁵, P. Traina⁵, M. Genovese⁵, P. Olivero³, J. Forneris³, K. Johnston⁶, L.M.C. Pereira², A. Vantomme²

1 Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal

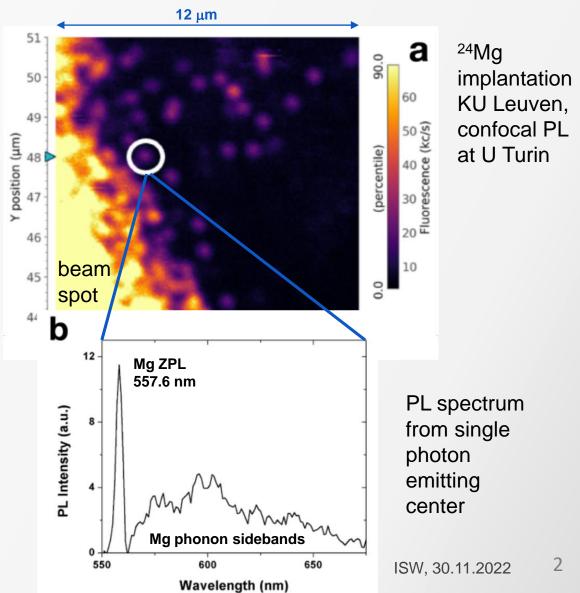

- 2 KU Leuven, Quantum Solid State Physics, Leuven, Belgium
- 3 Istituto Nazionale di Fisica Nucleare, sezione di Torino, Turin, Italy
- 4 Department of Physics, University of Torino, Turin, Italy
- 5 Istituto Nazionale di Ricerca Metrologica (INRiM), Turin, Italy
- 6 CERN-EP ISOLDE, Geneva, Switzerland
- Mg quantum colour centres in Diamond
- Emission channeling lattice location of ²⁷Mg in diamond

KU LEUVEN

Accepted for gold open access publication:

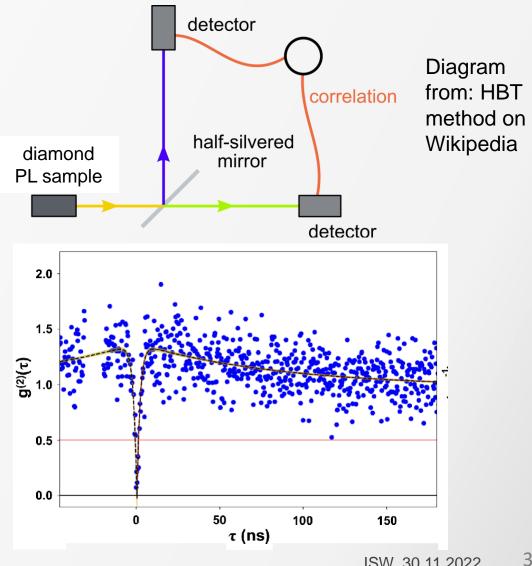
E. Corte, et al, "Magnesium-Vacancy Optical Centers in Diamond", ACS Photonics

26-51 i

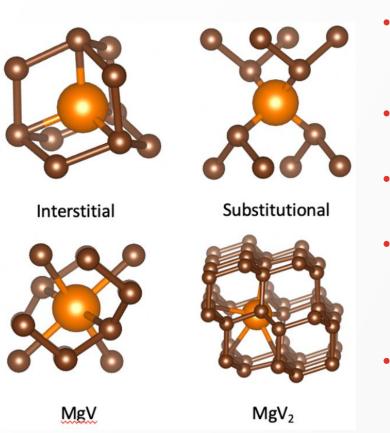


Mg-related photoluminescence in diamond

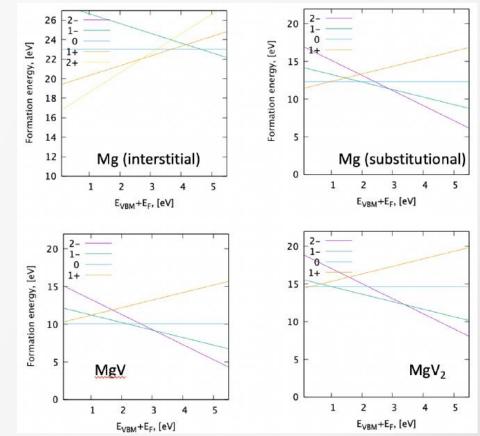
- ²⁴Mg implanted into artificial diamond of highest purity ("electronic-grade", [N]<5 ppb), 100 keV, fluence 2x10¹² cm⁻², annealed at 1200°C
- Excitation with 522 nm laser shows Photoluminescence (PL) inside implanted region with a sharp (FWHM 3.3 nm) and intense Zero Phonon Line (ZPL) at 557.6 nm.
- This line was previously assigned to Mg-related colour centers [1,2].
- Confocal PL microscopy with μm resolution reveals isolated bright spots at the edge of the implanted region.
- What is the nature of these bright spots?
- They also show the PL spectrum (ZPL + phonon sidebands) attributed to Mg.


[1] T. Lühmann, *et al*, "Screening and engineering of colour centres in diamond", J. Phys. D: Appl. Phys. 51 (2018) 483002
[2] T. Lühmann, *et al*, "Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond", Nat. Commun. 10 (2019) 4956

Mg-related centers as single photon emitters


- Hanbury-Brown Twiss (HBT) auto-correlation . measurements:
- 50% beam splitter, 2 single photon detectors .
- Measure the time τ in between the arrival of single . photons at the 2 detectors
- Autocorrelation $g^{(2)}(\tau)$ shows drop to 15% in photon-count • rate for 0 ns delay in between detected photons.
- Photons are emitted one by one by the same single center. •
- Presumably one single Mg atom .
- Saturation count rate as function of laser power: • ~2 Mcts/s (highest known for any single photon emitter in diamond)
- Possible "single photon-on-demand" system, e.g. for secure quantum communication
- What is the configuration of the underlying Mg-defect?

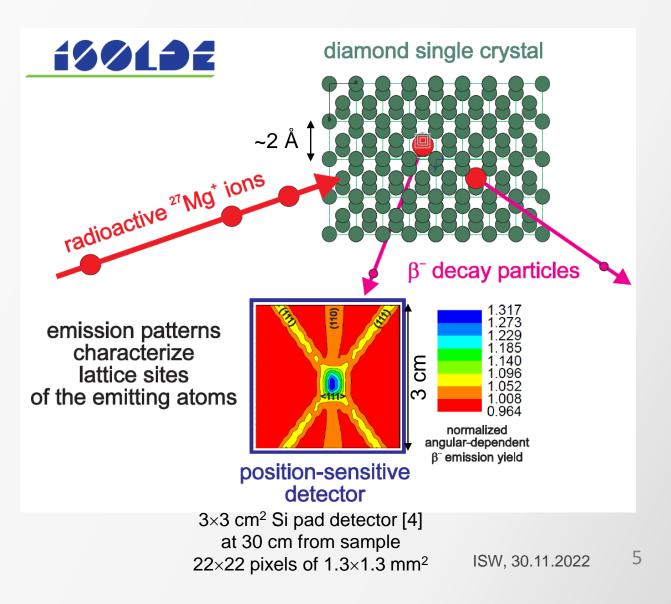
ISW, 30.11.2022


Predicted structures of Mg defects in diamond

[3] A. Pershin, *et al*, "Highly tunable magneto-optical response from MgV color centers in diamond", npj Quantum Information 7 (2021) 99

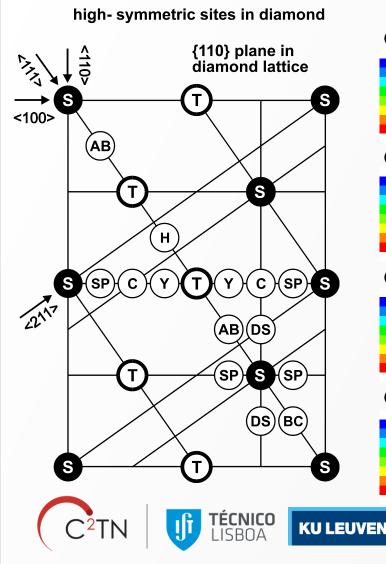
- Theoretically investigated structures of Mg-related complexes in diamond [3]:
- Interstitial Mg_i: (T_d symmetry)
- Substitutional Mg(S) (*T*_d symmetry)
- MgV: split-vacancy configuration with Mg on BC sites (D_{3d} symmetry <111>) predicted with ZPL=563 nm.
- Mg V_2 : (C_1 symmetry <100>)

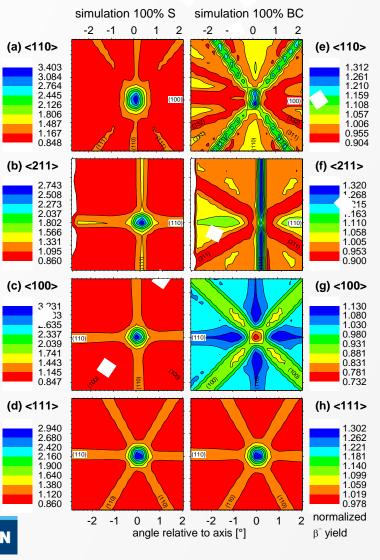
Formation energies favour MgV, Mg(S), possibly MgV₂, rule out Mg_i


Formation energy vs Fermi-level [3]

Emission Channeling with Short-Lived Isotopes (EC-SLI)

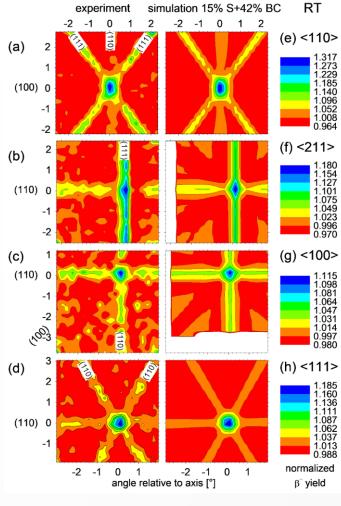
- Radioactive ²⁷Mg (t_{1/2}=9.5 min) probe atoms are produced and ion implanted into single crystals at ISOLDE, 30 keV, 10¹²-10¹³ cm⁻²
- Thermal processing: due to short $t_{1/2}$ we can only vary implantation temperature T_i .
- Position- and energy sensitive detector [4] is used to detect emission channeling [5] effects of β⁻ decay particles in the vicinity of major crystallographic directions.


[4] U. Wahl *et al.*, Nucl. Instr. Meth. A 524 (2004) 245
[5] H. Hofsäss, G. Lindner, Phys. Rep. 201 (1991) 121



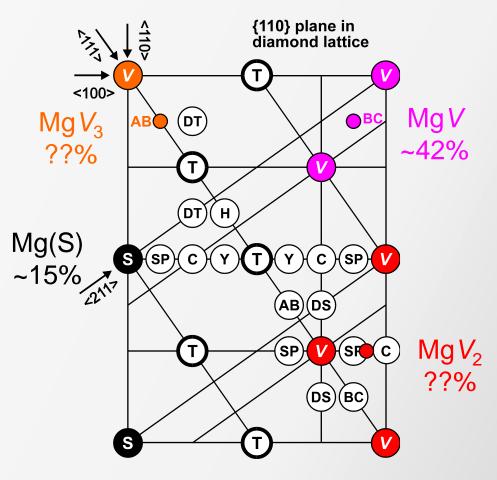
"Many-beam" calculation of β^- emission yields

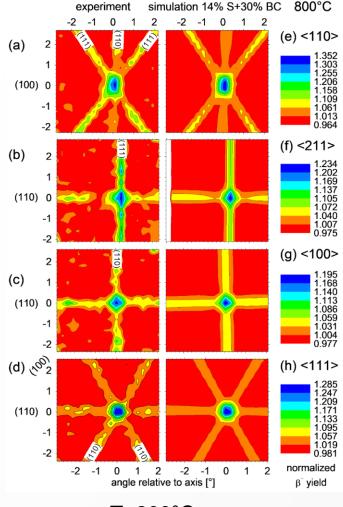
Occupied lattice sites identified by comparison of experimental results to simulated yields



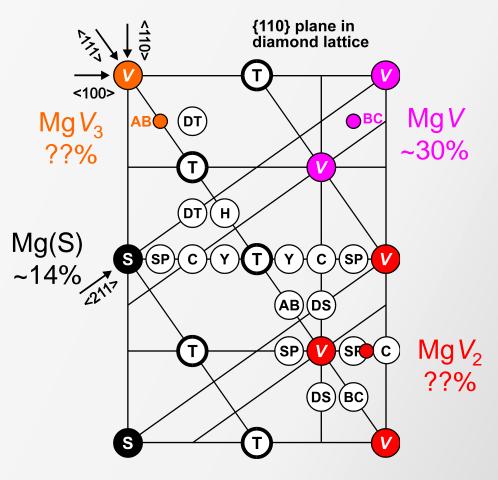
- β^- angular emission yield patterns are calculated for ~250 lattice sites in the diamond unit cell using the "many-beam" [5,6] approach.
- Anisotropy and contours of patterns change with position of emitter in the lattice, as shown for the <110>, <211>, <100>, and <111> patterns from ²⁷Mg on S and BC sites.
- The occupation of several sites results in a linear superposition of patterns.

[5] H. Hofsäss, G. Lindner, Phys. Rep. 201 (1991) 121[6] U. Wahl, *et al*, Hyperf. Interactions (2000) 129 349


EC characterization of ²⁷Mg colour centers in diamond (RT)

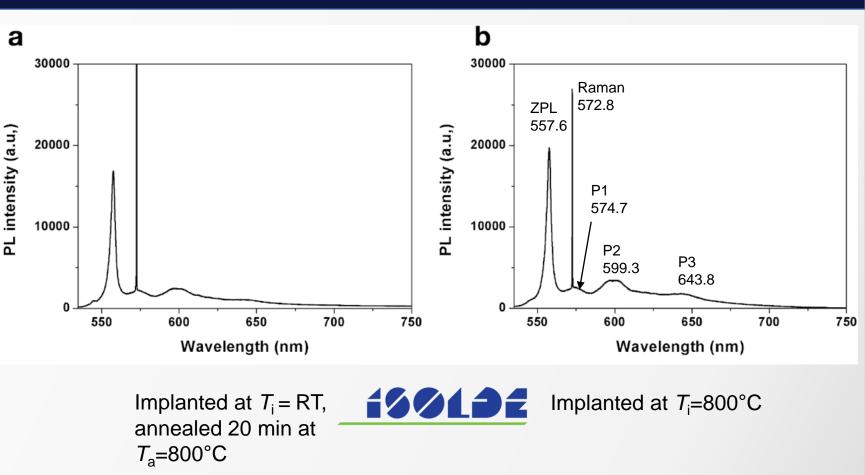

T_i=20°C C²TN

- EC from RT implanted ²⁷Mg show 15% on S and 42% on bond-center (BC) sites
- The occupation of BC sites is due to MgV in the splitvacancy configuration.
- High yield of formation (42%) of the Mg V defect
- However, ~43% of emitters are in "random" sites: could be within MgV₂ and MgV₃ complexes: lower symmetry ⇔ quite weak channeling


EC characterization of ²⁷Mg colour centers in diamond (800°C)

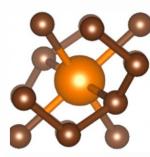
Ti=800°C C²TN

- EC from 800°C implanted ²⁷Mg show 14% on S and 30% on bond-center (BC) sites
- The occupation of BC sites is due to MgV in the splitvacancy configuration.
- High yield of formation (30%) of the MgV defect
- However, ~56% of emitters are in "random" sites: could be within MgV₂ and MgV₃ complexes:
 lower symmetry
 ⇔ quite weak channeling

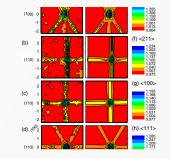


PL from ²⁶Mg implanted in diamond at ISOLDE

- Stable ²⁴Mg implanted into "electronic-grade" diamond ([N]<5 ppb) at ISOLDE, 30 keV, 1x10¹² cm⁻² (takes 30 s ⁽¹⁾)
- Excitation with 532 nm laser shows ZPL from ensemble of MgV centers at 557.6 nm, as well as characteristic phonon side bands P1, P2, P3 (measured at U Turin).
- ZPL is observed with narrow FWHM (3.4 nm) already after RT implantation and annealing at 800°C or 800°C implantation.
- Same FWHM as in literature after 1600°C annealing (3.5 nm) [7].


[7] E. Osmic, *et al*, "Unusual temperature dependence of the photoluminescence emission of MgV centers in diamond", Appl. Phys. Lett. 121 (2022) 084101

FWHM of ZPL is a measure of structural quality of MgV centers


Conclusions

Structural formation yield

Implanted ²⁷Mg shows a surprisingly high structural yield of formation of MgV complexes: 30-40%

However, the major part of Mg is most likely in Mg V_2 and Mg V_3 complexes of more complicated structure.

Formation mechanism

Formation of MgV takes place immediately following implantation during cool-down of implantation cascade.

No annealing is needed in order to drive vacancies towards Mg!

(in stark contrast to the formation mechanism of NV).

 $\begin{array}{c}
 40 \\
 40 \\
 57.6 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\
 72.8 \\$

Role of annealing

Thermal annealing serves...

- to restore the optical properties of implanted diamond,

- to **remove** implantation defects from the neighbourhood of the MgV complexes.

Very simple production process

