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• Mg quantum colour centres in Diamond 

• Emission channeling lattice location of 27Mg in diamond
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Mg-related photoluminescence in diamond

• 24Mg implanted into artificial diamond of highest purity
(“electronic-grade”, [N]<5 ppb), 100 keV, fluence 2x1012 cm-2, 
annealed at 1200°C

• Excitation with 522 nm laser shows Photoluminescence (PL) 
inside implanted region with a sharp (FWHM 3.3 nm) and 
intense Zero Phonon Line (ZPL) at 557.6 nm.

• This line was previously assigned to Mg-related colour centers
[1,2].

• Confocal PL microscopy with mm resolution reveals isolated
bright spots at the edge of the implanted region.

• What is the nature of these bright spots?

• They also show the PL spectrum (ZPL + phonon sidebands) 
attributed to Mg.
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Mg-related centers as single photon emitters

• Hanbury-Brown - Twiss (HBT) auto-correlation
measurements:

• 50% beam splitter, 2 single photon detectors

• Measure the time t in between the arrival of single 
photons at the 2 detectors

• Autocorrelation g(2)(t) shows drop to 15% in photon-count
rate for 0 ns delay in between detected photons.

• Photons are emitted one by one by the same single center.

• Presumably one single Mg atom

• Saturation count rate as function of laser power: 
~2 Mcts/s (highest known for any single photon emitter in 
diamond)

• Possible “single photon-on-demand” system, e.g. for 
secure quantum communication

• What is the configuration of the underlying Mg-defect?
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Predicted structures of Mg defects in diamond

• Theoretically investigated 
structures of Mg-related 
complexes in diamond [3]:

• Interstitial Mgi: 
(Td symmetry)

• Substitutional Mg(S) 
(Td symmetry)

• MgV: split-vacancy
configuration with Mg on BC 
sites (D3d symmetry <111>)
predicted with ZPL=563 nm.

• MgV2: (C1 symmetry <100>)
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[3] A. Pershin, et al, “Highly tunable magneto-optical 

response from MgV color centers in diamond”, npj

Quantum Information 7 (2021) 99

Formation energy vs Fermi-level [3]

Formation energies favour MgV, Mg(S), possibly MgV2, rule out Mgi
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Emission Channeling with Short-Lived Isotopes (EC-SLI)

• Radioactive 27Mg (t1/2=9. 5 min) probe atoms are 
produced and ion implanted into single crystals 
at ISOLDE, 30 keV, 1012-1013 cm-2

• Thermal processing: due to short t1/2 we can 
only vary implantation temperature Ti.

• Position- and energy sensitive detector [4] 
is used to detect emission channeling [5] effects 
of b- decay particles in the vicinity of major 
crystallographic directions.

~2 Å

33 cm2 Si pad detector [4]

at 30 cm from sample

2222 pixels of 1.31.3 mm2
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“Many-beam” calculation of b- emission yields

• b- angular emission yield patterns are 
calculated for ~250 lattice sites in the 
diamond unit cell using the “many-beam” 
[5,6] approach.

• Anisotropy and contours of patterns 
change with position of emitter in the 
lattice, as shown for the <110>, <211>, 
<100>, and <111> patterns from 27Mg on 
S and BC sites.

• The occupation of several sites results in 
a linear superposition of patterns.

[5] H. Hofsäss, G. Lindner, Phys. Rep.  201 (1991) 121

[6] U. Wahl, et al, Hyperf. Interactions (2000) 129 349
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Occupied lattice sites identified by comparison of experimental results to simulated yields
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EC characterization of 27Mg colour centers in diamond (RT)

• EC from RT implanted 27Mg 
show 15% on S and 42% on 
bond-center (BC) sites

• The occupation of BC sites 
is due to MgV in the split-
vacancy configuration.

• High yield of formation (42%) 
of the MgV defect

• However, ~43% of emitters are 
in “random” sites: could be
within MgV2 and MgV3

complexes: 
lower symmetry
 quite weak channeling

Ti=20°C
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EC characterization of 27Mg colour centers in diamond (800°C)

• EC from 800°C implanted 27Mg 
show 14% on S and 30% on 
bond-center (BC) sites

• The occupation of BC sites 
is due to MgV in the split-
vacancy configuration.

• High yield of formation (30%) 
of the MgV defect

• However, ~56% of emitters are 
in “random” sites: could be
within MgV2 and MgV3

complexes: 
lower symmetry
 quite weak channeling

Ti=800°C
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PL from 26Mg implanted in diamond at ISOLDE

• Stable 24Mg implanted into
“electronic-grade” diamond ([N]<5 
ppb) at ISOLDE, 30 keV, 1x1012

cm-2 (takes 30 s 🙂)

• Excitation with 532 nm laser 
shows ZPL from ensemble of MgV
centers at 557.6 nm, as well as 
characteristic phonon side bands 
P1, P2, P3 (measured at U Turin).

• ZPL is observed with narrow
FWHM (3.4 nm) already after RT 
implantation and annealing at
800°C or 800°C implantation.

• Same FWHM as in literature after
1600°C annealing (3.5 nm) [7].
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Implanted at Ti = RT, 

annealed 20 min at 

Ta=800°C[7] E. Osmic, et al, “Unusual temperature 

dependence of the photoluminescence 

emission of MgV centers in diamond”, Appl. 

Phys. Lett. 121 (2022) 084101

Implanted at Ti=800°C

Raman 

572.8ZPL 

557.6

P2 

599.3 P3 

643.8

P1 

574.7

FWHM of ZPL is a measure of structural quality of MgV centers
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Role of
annealing

Thermal annealing serves… 

- to restore the optical
properties of implanted
diamond, 

- to remove implantation
defects from the neighbourhood
of the MgV complexes.

Very simple production process

Structural
formation yield 

Implanted 27Mg shows a 
surprisingly high structural yield 
of formation of MgV complexes: 
30-40%

However, the major part of Mg 
is most likely in MgV2 and MgV3

complexes of more complicated
structure.

Formation
mechanism

Formation of MgV takes place 
immediately following 
implantation during cool-down 
of implantation cascade.

No annealing is needed in order 
to drive vacancies towards Mg! 

(in stark contrast to the 
formation mechanism of NV).
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