

The Charge Radii of ^{26,26m}Al

Peter Plattner

ISOLDE Workshop and User's Meeting

2.12.2022 11:30

Standard Model of Particle Physics

Standard Model of particle physics

- > One of the most comprehensive theories in physics
- Predicts sub-atomic particles further comprised of 3 generations of quarks

Cabibbo-Kobayashi-Maskawa (CKM) matrix describes mixing of quarks via weak interaction

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

CKM Unitarity

- Absolute square (i.e. $|V_{ij}|^2$) of each CKM-entry is probability of weak decay of jtype quark into i-type quark
- Standard Model of particle physics predicts unitarity of CKM matrix
- Deviation from unitarity would imply incomplete picture of Standard model
- Unitarity: $V_{CKM} \cdot V_{CKM}^{T} = I_3$
- In particular: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$
- Recent values in [1], [2]: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99848(70)$

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.

$\mathcal{F}t = ft \cdot (1 + \delta'_{R})(1 + \delta_{NS} - \delta_{C})$ V_{ud} Nuclear charge radius r_c important experimental input into theoretical calculation of isospin-symmetrybreaking corrections u d $\delta_c \coloneqq f(r_c, \dots)$ р 4

• V_{ud} can be determined via $\mathcal{F}t$ value of superallowed $0^+ \rightarrow 0^+ \beta$ decays $|V_{ud}|^2 = \frac{K}{2G_F^2(1+\Delta_R^V)\overline{\mathcal{F}t}}$

Small theoretical corrections

(leading uncertainty!)

Partial half life

n

u d d

Energy difference

Importance of charge radius of ^{26m}AI

- Weighted mean $\overline{\mathcal{F}t}$ of 15 precision cases used to calculate V_{ud} $|V_{ud}|^2 = \frac{K}{2G_F^2(1 + \Delta_R^V)\overline{\mathcal{F}t}}$
- *Ft* value of ^{26m}Al

 \geq Most accurately known of 15 isotopes used to calculate $\overline{\mathcal{F}t}$

Nuclear charge radius unknown, but extrapolated as 3.04(2) fm from other nuclei

Laser Spectroscopy

- Hyperfine transitions in atoms or ions yield information about
 - ≻Nuclear spin
 - >Magnetic dipole and electric quadrupole moments of nuclei
 - Isotope shifts and nuclear charge radii

Hyperfine Spectrum

Isotope Shift

- Isotope shift IS = difference of centroid frequencies for different isotopes
- Used to calculate difference in mean square charge radii between isotopes

92

Collinear Laser Spectroscopy

- Measurements performed at COLLAPS
- Charge exchange with sodium
- Measure fluorescence photons of resonant transitions

Hyperfine Spectra

- Ion extraction 0 and 6s after proton trigger
- Decrease in isomer intensity in fit consistent with half-life

$$\succ N_2 = N_1 \cdot \left(\frac{1}{2}\right)^{\frac{6s}{t_{1/2}}}$$

Collinear Laser Spectroscopy at IGISOL

- Collaboration with IGISOL
- Second set of measurements performed at IGISOL, Jyväskylä
- Known to have more favorable isomer : ground state ratio for ^{26,26m}AI

Hyperfine Spectra

308nm

 $3s^{2}3p^{2}P_{3/2}^{0}$

3s²3p ²P⁰_{1/2}

396nm

Hyperfine Spectra

Isotope Shift

Isotope shift to ²⁶Al isomer

Figures removed due to it containing unpublished data.

- Isotope shifts $\delta v^{27,26}$, $\delta v^{27,26m}$ used to calculate difference in mean square nuclear charge radii $\delta \langle r^2 \rangle^{27,A}$ between 26,26m Al and ^{27}AI $\delta \langle r^2 \rangle^{27,A} = \frac{\delta \nu^{27,A}}{F} - \frac{M}{F} \frac{m_A - m_{27}}{m_{27} \cdot (m_A + m_e)}$
- Nuclear charge radius of ²⁷Al, F, M from [1]

[1] Heylen et al., Physical Review C 2021, 103.

Nuclear Charge Radii

- Nuclear charge radius of ²⁶Al: 3.080(19) fm
- Nuclear charge radius of ^{26m}Al: 3.130(15) fm
- 4.5 statistical standard deviations from extrapolated value
- Preliminary extrapolation by same number of standard deviations for radial overlap correction of ISB correction

	Old values from [1]	Removed
^{26m} Al nuclear charge radius	3.04(2) fm	due to it containing
$\mathcal{F}t$ of 26m Al	3072.4(11) s	data.
$\overline{\mathcal{F}t}$	3072.24(185) s	

Figure removed due to it containing unpublished data.

Implications for CKM unitarity

 Shifts the result of unitarity test closer towards unitarity by ~1/10 standard deviations

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99848(70) \rightarrow$

Removed due to it containing unpublished data.

- Motivates further studies of nuclear charge radii in other superallowed β emitters

Summary and Conclusion

- The charge radii of ^{26,26m}Al have been determined by Collinear Laser spectroscopy
- 4.5 standard deviations difference to extrapolated value used in isospin-symmetry-breaking corrections for V_{ud} of CKM matrix
- Prelim. extrapolation hints at slight shift towards CKM unitarity

Thank you for your attention!

P. PLATTNER¹, E. WOOD², L. AL AYOUBI³, O. BELIUSKINA³, M. L. BISSELL^{4,5}, K. BLAUM¹, P. CAMPBELL⁴, B. CHEAL², R. DE GROOTE⁶, C. DEVLIN², T. ERONEN³, L. FILIPPIN⁷, R. F. GARCÍA RUZÍZ⁸, Z. GE³, S. GELDHOF⁶, W. GINS³, M. GODEFROID⁷, H. HEYLEN⁵, M. HUKKANEN³, J. D. HOLT^{9,10}, P. IMGRAM¹¹, A. JARIES³, A. JOKINEN³, A. KANELLAKOPOULOS⁶, A. KANKAINEN³, S. KAUFMANN¹¹, K. KÖNIG¹¹, Á. KOSZORÚS⁵, S. KUJANPÄÄ³, S. LECHNER⁵, S. MALBRUNOT-ETTENAUER⁵, R. MATHIESON², T. MIYAGI¹¹, I. MOORE³, P. MÜLLER¹¹, D. NESTERENKO³, R. NEUGART^{1,12}, G. NEYENS⁶, W. NÖRTERSHÄUSER¹¹, A. ORTIZ-CORTES³, H. PENTTILÄ³, I. POHJALAINEN³, A. RAGGIO³, M. REPONEN³, S. RINTA-ANTILA³, L. V. RODRÍGUEZ^{5,1}, J. ROMERO³, R. SÁNCHEZ¹³, F. SOMMER¹¹, M. STRYJCZYK³, V. VIRTANEN³, L. XIE⁴, Z. Y. XU⁶, X. F. YANG^{6,14}, AND D. T. YORDANOV¹⁵

¹Max Planck Institute for Nuclear Physics, Heidelberg, Germany
²University of Liverpool Department of Physics, Liverpool, United Kingdom
³Department of Physics, University of Jyöäskylä, Jyväskylä, Finland
⁴Department of Physics, University of Manchester, Manchester, United Kingdom
⁵ISOLDE, CERN Experimental Physics Department, Switzerland
⁶Institute for Nuclear and Radiation Physics, KU Leuven, Leuven, Belgium
⁷Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université libre de Bruxelles, Brussels, Belgium
⁸Massachusetts Institute of Technology, Cambridge, MA, USA
⁹TRIUMF, Vancouver, Canada
¹⁰Department of Physics, McGill Universität Darmstadt, Germany
¹²Institut für Kernchemie, Universität Mainz, Mainz, Germany
¹³GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
¹⁴School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

CERN

Thanks to COLLAPS, IGISOL, ISOLDE

Bundesministerium Bildung, Wissenschaft und Forschung

Backup

Formulas

J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.

V_{ud} **Uncertainties**

CERN

Unknown Charge Radii for V_{ud}

known				
Z	iso	Ele	Ref	
2	2	Mg	ISOLDE, Yordanov	
34	4	Ar	ISOLDE, Klein	
3	8	Ca	NSCL, Miller	
3	8 m	К	ISOLDE, Bissell	
4	2	Sc	JYFL, Koszorus	
) 50	0	Mn	JYFL, Charlwood	
74	4	Rb	TRIUMF, Mane	
unknowr	ı			
10	0	С		
14	4	0		
2	6	Si		
i 20	6 m	AI		
34	4	CI		
4	6	V		
54	4	Со		
6	2	Ga		

