

HSE Radiation Protection

Radiation Monitoring at the North Experimental Area

Frédéric Aberle 5th of December 2022

Geographical location

Radiation Protection

HSE

North Area Layout

HSE

Radiation Monitoring at the North Experimental Area

05/12/2022

EHN1 Layout

Neutrino platform

Transfer tunnel	H6 beam areas		Protons, electrons, muons or mixed hadrons Up to 400 GeV/c for primary protons Up to 10 ⁸ particles/spill in some zones
	H8 beam ar	eas	Possibility to take parasitic muons behind main user
			Courtesy of S. Girod – BE-EA

HSE

Radiation Monitoring at the North Experimental Area

05/12/2022

EHN1 picture

Radiation Protection

HSE

User Zones Layout

Spill structure from SPS

- 4.8s 9.6s spill length
- 1 spill every 14s 48s
- Spill length and repetition frequency depends on the number of facilities delivered by the SPS (North Area, AWAKE, HiRadMat, LHC)

User Zones are shown in colours Main radiological risks are:

- Prompt radiation (in the whole experimental hall)
- Remanent radioactivity (in the transfer tunnels)

- High turnover of numerous experiments and R&D projects with different experimental setups and shielding configurations
- Zones are separated with movable 3.2m long iron dumps (XTDVs) surrounded by concrete

HSE

Radiation monitors layout

± 24x IG5-H20

What's the logic for the monitors placement?

- 1 Argon chamber upstream almost every beam area
- 1 Hydrogen chamber near control rooms
- And assess all the particular cases

🛨 3x IAM

HSE

27x IG5-A20

Monitoring philosphy

Radiation Monitoring serves two goals:

- Inform the personnel of higher radiation levels
 - Ensured by the CAU (CROME Alarm Units) integrated with the monitors
- Interlock the beam if radiation levels are too high
 - Ensured by the CJBs of EHN1 and the interlock equations

2 types of interlocks

- Unconditional
 - High level of radiation cuts the beam
- Conditional

HSE

- If the beam area where the monitor is located is in access mode AND
- if high level of radiation is detected, the beam is cut

Unconditional	Conditional	
H2/H4 beam cut	H2/H4 beam cut	
H6/H8 beam cut	H6/H8 beam cut	

Radiation monitors layout

Conditions examples:

Area 152 safe for access AND high alarm = Cuts beams H2

Area 112 safe for access AND high alarm = Cuts beams H2, H4, H6 and H8

HSE

Special cases

- High turnover of numerous experiments and R&D projects with different experimental setups and shielding configurations
- Due to this complexity, it is difficult to design a monitoring array that covers all setup configuration

If the area is not well shielded, or presents some weaknesses, we need to find a solution

CROME Mobile measurement unit

Consists of two IG5 chambers (argon and hydrogen), audible alarm unit, battery pack, and data transmission to the REMUS supervision

HSE

Summary

- Complex area
 - 6 beam lines, with several user areas
 - · Various areas characteristics (shielding, beam elements, etc.)
- Complex monitoring array
 - Several types of radiation monitors needed
 - Beam frequency is variable
 - Beam characteristics are not constant
- Advanced interlock system
 - Need for a "tailor made" interlock system
 - Interfaced directly with the machine
- Special cases

HSE

- Mobile monitoring devices can be used
- Fully integrated with the supervision system

Area 112 safe for access AND high alarm = Cuts beams H2, H4, H6 and H8

Thank you

Questions?

Radiation Protection

HSE

Radiation Monitoring at the North Experimental Area

05/12/2022