

Matthias Mozer for the CMS experiment Z/W + jets in CMS

- W/Z + jets: precision probe into QCD
- Important background on searches
- Three studies presented here:
 - W/Z + jets
 - Z + b jets
 - Boosted W polarization
- All on full 2010 data (36 pb⁻¹)

W/Z + Jets

- Basic QCD + EWK
- But contains:
 - Jets
 - Leptons
 - MET
- Prominent background in searches
- How well do we understand these processes?
- How much can we rely on simulation?

W/Z + Jets

- Most used for background studies: ME+PS simulation:
 - Tree level only
 - Includes non-perturbative corrections
- Proper NLO calculations
 - Recent development
 - Not yet widely used

• Can we improve?

Selection: e

- Require single electron trigger (thresholds <17 GeV)
- Require offline reconstructed electron with
 - $P_t > 20 \text{ GeV}$, $|\eta| < 2.5$, $1.44 < |\eta| < 1.57$ excluded
 - Matches trigger primitive
 - Tight isolation, cluster shape, track matching, conversion rejection $\rightarrow \sim 80\%$ efficiency
- Search for second electron with:
 - $P_t > 10 \text{ GeV}$, $|\eta| < 2.5$, $1.44 < |\eta| < 1.57$ excluded
 - ♦ 60 < M_{ee} < 120</p>
- If second e passes loose (~95% efficiency) identification
 => Z sample
- No second electron => W sample if
 - ♦ M_T > 20 GeV
 - no muon with $p_t > 10 \text{ GeV}$ (top veto)

Selection: e

- Require single electron trigger (thresholds <17 GeV)
- Require offline reconstructed electron with
 - + $P_{\rm t}$ > 20 GeV, $|\eta|$ < 2.5 , 1.44 < $|\eta|$ < 1.57 excluded
 - Matches trigger primitive
 - Tight isolation, cluster shape, track matching, conversion rejection \rightarrow ~80% efficiency
- Search for second electron with:
 - + $P_{\rm t}$ > 10 GeV, $|\eta|$ < 2.5 , 1.44 < $|\eta|$ < 1.57 excluded
 - ♦ 60 < M_{ee} < 120</p>
- If second e passes loose (~95% efficiency) identification
 => Z sample
 Results quoted in this acceptance
- No second electron => W sample if
 - ♦ M_T > 20 GeV
 - no muon with p_t >10 GeV (top veto)

Selection: µ

- Require single muon trigger (threshold < 15 GeV)
- Require one muon with
 - P_t > 20 GeV, |η| < 2.1
 - Matches trigger primitve
 - Isolation, good track fit quality
- Search second muon with
 - P_t > 10 GeV, |η| < 2.4
 - 60 < M_{μμ} < 120
- If second muon is found
 => Z sample
- No second muon => W sample if
 - ♦ M_T > 20 GeV

Selection: µ

- Require single muon trigger (threshold < 15 GeV)</p>
- Require one muon with
 - P_t > 20 GeV, |η| < 2.1
 - Matches trigger primitve
 - Isolation, good track fit quality
- Search second muon with
 - $P_t > 10 \text{ GeV}, |\eta| < 2.4$
 - $60 < M_{\mu\mu} < 120$
- If second muon is found
 => Z sample
- No secResults quoted in this acceptance
 - ♦ M_T > 20 GeV

Jets

• Anti-kt algorithm ($\Delta R = 0.5$) using "Particle Flow" objects

- $|\eta| < 2.4$ (tracker acceptance), $E_T > 30 GeV$
- Data driven jet energy calibration
- Pile-up: remove energy offset with FastJet
- Muons: removed from particle list before clustering Electrons: veto jets within ΔR < 0.3 of W/Z decay electrons

Signal Extraction

120

Corrections

- Efficiency: dependence on N_{jet} most important
 - Study with Tag & Probe (muons), MC (electrons), factorize as:
 - reconstruction (cluster \rightarrow ele / track \rightarrow muon): no N_{jet} dependence
 - identification: N_{jet} dependence due to isolation cuts
 - trigger (leading leg only): no N_{jet} dependence
- Migrations between jet bins
 - Extract migration matrix R(n^{RECO}, n^{GEN}) from MC
 - Use singular value decomposition (SVD) to "unsmear" N_{jet} distribution
- Measure

$$\frac{\sigma(V+ \ge n-\text{jets})}{\sigma(V+ \ge 0-\text{jets})} \qquad \qquad \frac{\sigma(V+ \ge n-\text{jets})}{\sigma(V+ \ge (n-1)-\text{jets})}$$

to reduce systematic uncertainties (lepton id, jet energy scale, lumi ...)

Results: Rates W

Very good agreement with predictions from ME+PS simulation, while PS alone starts to fail for $n_{jet} \ge 2$

Results: Rates Z

Excellent agreement with ME+PS, but PS alone also compatible

Results: Berends-Giele Scaling

- Expect $C_n = \frac{\sigma_n}{\sigma_{n+1}}$ to be ~ constant for n ≥1
- Test scaling by fitting $C_n = \alpha + \beta n$
- Taking into account correlations between σ_n
- Taking into account migrations between jet bins

Results: Berends-Giele Scaling

 Reasonable agreement to ME+PS expectation for W and Z, e and µ

Z + b jets

- Benchmark channel for MSSM Higgs searches
- Fixed vs variable flavour number schemes (LO only)
- Select Events with
 - At least one Z
 - At least one jet (Et >25 GeV)
 - At least one secondary vertex in the jet
 - Met < 40 GeV (top rejection)
- Two b-jet selections:
 - High purity
 - High efficiency

Z + b jets

3

Good agreement with ME+PS

No clear distinction between fixed and variable flavour number schemes:

Data sample mostly in the kinematic Domain where both agree

Z+b/Z+jet ratio

 Z+b purity is extracted from fit to the secondary vertex mass

Purity (%)	SSVHE	SSVHP		
data	55±9	88±11		
MC	57±3	82±4		

- Results are compatible with MadGraph(*) and MCFM NLO calculations
- (*) Z+b and Z+c with p_{T,jet} >15 GeV scaled to corresponding MCFM x-sec

Sample	$\mathcal{R} = rac{\sigma(pp \rightarrow Z+b+X)}{\sigma(pp \rightarrow Z+j+X)}$ (%), $p_T^e > 25$ GeV, $ \eta^e < 2.5$	$\mathcal{R} = rac{\sigma(pp \rightarrow Z+b+X)}{\sigma(pp \rightarrow Z+j+X)}$ (%), $p_T^{\mu} > 20 \text{ GeV}, \eta^{\mu} < 2.1$
Data HE	$4.3 \pm 0.6(stat) \pm 1.1(syst)$	$5.1 \pm 0.6(stat) \pm 1.3(syst)$
Data HP	$5.4 \pm 1.0(stat) \pm 1.2(syst)$	$4.6 \pm 0.8(stat) \pm 1.1(syst)$
MADGRAPH	$5.1 \pm 0.2(stat) \pm 0.2(syst) \pm 0.6(theory)$	$5.3 \pm 0.1(stat) \pm 0.2(syst) \pm 0.6(theory)$
MCFM	4.3 ± 0.5 (theory)	$4.7 \pm 0.5 (theory)$

Z + b: Example Event

Production of high p_{τ} W-bosons ($p_{\tau} > 50$ GeV)

• 7 TeV+high p_{τ} dominant production valence quark w/gluon

- Strong polarization effects in transverse plane
- SM: Predominant left handedness for + and -
- Unlike tevatron (pp̄)
 - No CP counterparts
 - Cause for left handedness
- Robust over jet multiplicity

Expect left right polarization asymmetry in a pp collider

Signal Extraction

- Require W canidate: $P_T(W)=P_T(I)+MET > 50 \text{ GeV}$
- v not measured:
 ⇒ 9* undetermined
- Use proxy instead: $LP = \frac{\vec{p}_T(\ell) \cdot \vec{p}_T(W)}{|\vec{p}_T(W)|^2}$

 $LP \approx 0.5 \cos(\vartheta^*) + 0.5$

 Extract polarization with template fit

Boosted W polarization results

- Systematics dominated by MET uncertainty
- f_L-f_R > 0 => mostly left-handed

	Combined Results					
$(f_L - f_R)^{-1}$	0.226 ± 0.031 (stat) ± 0.050 (syst)					
f ₀ ⁻	0.162 ± 0.078 (stat) ± 0.136 (syst)					
$(f_L - f_R)^+$	0.300 ± 0.031 (stat) ± 0.034 (syst)					
f ₀ ⁺	0.192 ± 0.075 (stat) ± 0.089 (syst)					

- Comprehensive set of measurements on full 2010 data (36 pb⁻¹)
- Jet rates for E_t > 30 GeV in agreement with ME+PS
- Direct measurement of Berends-Giele scaling agrees with expectations
- Measured significant polarization of boosted W
- Observation of Z + b and ratio Z + b / Z + jets agrees well with NLO calculation

muons

		data	stat	JES MC	$\epsilon(\ell)$	D6T tune	Theory
Ζ	α	5.8	\pm 1.2	± 0.6	± 0.1	+0.3	4.8 ± 0.1
	β	-0.2	± 1.0	± 0.3	± 0.1	-0.0	0.35 ± 0.09
W	α	4.3	± 0.3	± 0.2	± 0.2	-0.4	5.16 ± 0.09
	β	0.7	± 0.3	± 0.2	± 0.3	+0.3	0.22 ± 0.06

electrons

		data	stat	JES	$\epsilon(\ell)$	Theory
Z	ά	5.0	± 1.0	$^{+0.1}_{-0.0}$	$^{+0.00}_{-0.06}$	5.04 ± 0.10
	β	0.7	± 0.8	+0.03 -0.04	$^{+0.3}_{-0.6}$	0.45 ± 0.08
W	α	4.6	± 0.4	$^{+0.2}_{-0.0}$	-0.05 + 0.02	5.18 ± 0.09
	β	0.5	± 0.4	$^{+0.0}_{-0.3}$	± 0.2	0.36 ± 0.07

05 Apr. 2011 Matthias Mozer

Jet energy scale uncertainty

- Systematics obtained from uncertainty on Jet Energy Corrections (JEC) including:
 - Corrections from data
 - JEC flavour dependence (estimated from MC)
 - UE offset subtraction by FastJet (500 MeV on each jet in MC)
- In addition we considered:
 - \bullet effects on MET were studied on a fit to M_T on data
 - jet energy resolution
 - pile-up residual effect on the jet rate after subtraction

Systematic uncertainty on jet counting [%]							
Jet multiplicity	0	1	2	3	≥ 4		
Jet Energy Scale		±6	$^{+9}_{-8}$	$+12 \\ -11$	$^{+14}_{-13}$		
₽ _T (W only)	+0.6 -0.7	$+3.5 \\ -3.1$	$^{+4.5}_{-3.9}$	$+5.2 \\ -4.5$	$^{+6}_{-5}$		
Jet Energy Resolution		$^{+0.6}_{-0.5}$	$^{+0.8}_{-0.7}$	$^{+1.0}_{-0.9}$	$^{+1.1}_{-1.0}$		
Pile-up	Ŧ 5	±5	± 5	± 5	± 5		
Total in W events	∓ 5	± 8	$^{+11}_{-10}$	$^{+14}_{-12}$	$^{+16}_{-15}$		
Total in Z events	∓ 5	± 8	± 10	$+13 \\ -12$	$+15 \\ -14$		

Systematic uncertainties

- Systematic uncertainties on the exclusive rates after efficiency correction are shown
- Largest systematics due to jet reconstruction and efficiency
- Errors on the efficiency are largerly uncorrelated (statistical error on T&P in each multiplicity bins)
- Errors due to jet counting are instead fully correlated among channels and jet multiplicity

Uncertainties on jet rate in $W \rightarrow e\nu$ events [%]								
Jet multiplicity	0	1	2	3	≥ 4			
Jet counting	∓ 5	± 8	$^{+11}_{-10}$	$^{+14}_{-12}$	$^{+16}_{-15}$			
Lepton efficiency	± 3	$^{+6}_{-5}$	+7 -6	± 10	$^{+24}_{-12}$			
Signal extraction		± 0.1	± 0.4	±2.9	± 8.5			
Total systematics	±6	±10	$^{+13}_{-12}$	$^{+18}_{-16}$	$^{+30}_{-21}$			
Statistical uncertainty	± 0.3	± 1.0	± 2.4	± 7.5	± 22			
Uncertainties on jet rate in $W \rightarrow \mu\nu$ events [%]								
Jet multiplicity	0	1	2	3	≥ 4			
Jet counting	Ŧ 5	± 8	$^{+11}_{-10}$	$^{+14}_{-12}$	$^{+16}_{-15}$			
Lepton efficiency	± 3	± 6	± 4	± 10	± 17			
Signal extraction		± 0.1	± 0.4	±2.9	± 8.5			
Total systematics	±6	± 10	$^{+13}_{-12}$	$^{+19}_{-17}$	± 26			
Statistical uncertainty	± 0.2	± 0.8	±2.3	± 6.5	± 27			
Uncertainties on je	et rate in	$n Z \rightarrow e$	e+e- ev	ents [%	5]			
Jet multiplicity	0	1	2	3	≥ 4			
Jet counting	= 5	±8	$+11 \\ -10$	+14 - 12	$^{+16}_{-15}$			
Efficiency	±3	$+6 \\ -5$	$+7 \\ -6$	±10	$^{+24}_{-12}$			
Total systematics	±6	±10	$+13 \\ -12$	$+18 \\ -16$	$^{+30}_{-21}$			
Statistical uncertainty	±1.0	±3.0	± 8.0	±20	± 47			
Uncertainties on jet rate in $Z \rightarrow \mu^+\mu^-$ events [%]								
Jet multiplicity	0	1	2	3	≥ 4			
Jet counting	= 5	± 8	$+11 \\ -10$	+14 - 12	$^{+16}_{-15}$			
Efficiency	± 3	$+6 \\ -5$	+7 - 6	± 10	$+24 \\ -12$			
Total systematics	±6	± 10	+13	$+18 \\ -16$	$+30 \\ -21$			
Statistical uncertainty	± 1.1	±2.7	±5.2	±18	±35			

W signal extraction: top discrimination

- Simple PDF with 2 params: b-tag and mistag eff
- Probability for nj^{tagged} in case of nbj b-jets and nj jets:

$$\begin{split} P(n_{j}^{tagged}|n_{j}, n_{bj}, \epsilon_{nob}, \epsilon_{b}) &= \\ \begin{cases} (1 - \epsilon_{nob})^{n_{j} - n_{bj}} \cdot (1 - \epsilon_{b})^{n_{bj}} & n_{j}^{tagged} = 0\\ (1 - \epsilon_{nob})^{n_{j} - n_{bj} - 1} \cdot \epsilon_{nob} \cdot (n_{j} - n_{bj}) \cdot (1 - \epsilon_{b})^{n_{bj} + } & n_{j}^{tagged} = 1\\ (1 - \epsilon_{nob})^{n_{j} - n_{bj}} \cdot (1 - \epsilon_{b})^{n_{bj} - 1} \cdot (\epsilon_{b}) \cdot n_{bj} & n_{j}^{tagged} = 1\\ 1 - P(0) - P(1) & n_{j}^{tagged} \ge 2 \end{split}$$

- Signal corresponds to events with 0 b-jets (n_{b0}), top to events with 1 and 2 b-jets (n_{b1} + n_{b2})
- Top with 0 b-jets is fixed to MC yield (very small)
- ◆ Other BKG is determined from the M_T component of the likelihood
- mistag eff: 2.42 \pm 0.03(stat) \pm 0.5(syst)%
- ▶ tag eff: 63 ± 6.3%

• Cruijff function: $f(x; m, \sigma_L, \sigma_R, \alpha_L, \alpha_R) = N_s \cdot e^{-\frac{(x-m)^2}{2\sigma^2 + n(x-m)^2}}$

where $\sigma = \sigma_L(\sigma_R)$ for x < m(x > m) and $\alpha = \alpha_L(\alpha_R)$ for x < m(x > m)