V+jet Production at the LHC: ELECTROWEAK RADIATIVE CORRECTIONS

Tobias Kasprzik

In collaboration with A. Denner, S. Dittmaier and A. Mück

[JHEP 0908:075,2009 & arXiv:1103.0914v1]

Karlsruhe Institute of Technology (KIT), Institut für Theoretische Teilchenphysik (TTP)

5th April 2011, CERN LHC EW WG Meeting

2 Details of the calculation

Motivation - Importance of the Drell-Yan Process

LHC: Weak bosons (W/Z) produced with large cross sections, final-state charged leptons easy to reconstruct

- \rightarrow Drell–Yan-like processes important "standard candles" at the LHC
 - Monitor and calibrate the LHC's luminosity
 - W-boson production:
 - Determination of M_W , $\Gamma_W \Rightarrow$ fundamental SM parameters

Z-boson production:

- Determine lepton energy scale, detector resolution, linearity of detector response
 → Important impact on precision of W-boson mass measurement!
- Measure $\sin^2 \Theta_{\text{eff}}^{\text{lep}}$ at the LHC by investigating A_{FB}
- **Constrain PDFs** by studying appropriate observables, e.g. the W-boson charge asymmetry A_W or $R_{\pm} = d\sigma(W^-)/d\sigma(W^+)$
- Ratio $R_{Z/W} = \sigma_Z / \sigma_W$ important to reduce error on measurement of Γ_W
- V+jet(s) events **important background** to tt-production, SM Higgs-boson production, BSM processes, . . .

Motivation - Importance of the Drell-Yan Process

LHC: Weak bosons (W/Z) produced with large cross sections, final-state charged leptons easy to reconstruct

- \rightarrow Drell–Yan-like processes important "standard candles" at the LHC
 - Monitor and calibrate the LHC's luminosity
 - W-boson production:
 - Determination of M_W , $\Gamma_W \Rightarrow$ fundamental SM parameters

Z-boson production:

- Determine lepton energy scale, detector resolution, linearity of detector response → Important impact on precision of W-boson mass measurement!
- Measure $\sin^2 \Theta_{\text{eff}}^{\text{lep}}$ at the LHC by investigating A_{FB}
- Constrain PDFs by studying appropriate observables, e.g. the W-boson charge asymmetry A_W or $R_{\pm} = d\sigma(W^-)/d\sigma(W^+)$
- Ratio $R_{Z/W} = \sigma_Z / \sigma_W$ important to reduce error on measurement of Γ_W
- V+jet(s) events **important background** to tt-production, SM Higgs-boson production, BSM processes, . . .

High-precision theoretical predictions necessary!

Reminder: Calculation of Hadronic Cross Sections

Schematic illustration for $pp/p\bar{p} \rightarrow Z^0/\gamma + jet + (jet/\gamma) \rightarrow \ell^-\ell^+ + jet + (jet/\gamma)$

Hadronic cross sections

$$d\sigma_{AB}(p_A, p_B) = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_{a/A}(x_a, \mu_{\rm F}) f_{b/B}(x_b, \mu_{\rm F}) d\hat{\sigma}_{ab}^{\rm NLO}(p_a, p_b, \mu_{\rm F}, \mu_{\rm R})$$
$$\times \mathcal{F}^{(\ell^-\ell^+ + jet + (jet/\gamma))}(\{\mathcal{O}_{\rm FS}\}), \qquad p_{a,b}^{\mu} = x_{a,b} P_{A,B}^{\mu}$$

Dependence on μ_R, μ_F reduced by inclusion of higher perturbative orders

 F^{(ℓ[−]ℓ⁺+jet+(jet/γ))} incorporates definition of observables {*O*_{FS}} ⊕ phase-space

cuts

Reminder: Calculation of Hadronic Cross Sections

Schematic illustration for $pp/p\bar{p} \rightarrow Z^0/\gamma + jet + (jet/\gamma) \rightarrow \ell^-\ell^+ + jet + (jet/\gamma)$

Hadronic cross sections

$$d\sigma_{AB}(p_A, p_B) = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_{a/A}(x_a, \mu_{\rm F}) f_{b/B}(x_b, \mu_{\rm F}) d\hat{\sigma}_{ab}^{\rm NLO}(p_a, p_b, \mu_{\rm F}, \mu_{\rm R})$$
$$\times \mathcal{F}^{(\ell^-\ell^+ + jet + (jet/\gamma))}(\{\mathcal{O}_{\rm FS}\}), \qquad p_{a,b}^{\mu} = x_{a,b} P_{A,B}^{\mu}$$

NLO partonic cross section:

$$\hat{\sigma}_{ab}^{\rm NLO} = \hat{\sigma}_{ab}^{\rm LO} + \hat{\sigma}_{ab}^{\rm virt} + \hat{\sigma}_{ab}^{\rm real}$$

Tobias Kasprzik (KIT)

 $pp \rightarrow V + jet + X at NLC$

Importance of Higher-Order Corrections – QCD

Fixed-order QCD corrections

- NLO corrections can be huge
- Mandatory for reduction of $\mu_{\rm R}, \mu_{\rm F}$ dependence

Importance of Higher-Order Corrections – QCD

Fixed-order QCD corrections

- NLO corrections can be huge
- Mandatory for reduction of $\mu_{\rm R}, \mu_{\rm F}$ dependence

Survey of theoretical predictions

- NLO (1-loop) corrections to single-Z production
 - matched with parton showers [Frixione, Webber 2006; Alioli, Nason, Oleari, Re 2008]
 - combined with soft-gluon resummation [Bozzi et al. 2008; Berge, Nadolsky, Olness 2006; . . .]
- NNLO (2-loop) corrections to the Drell-Yan process known fully differentially

[Catani, Cieri, Ferrera, de Florian, Grazzini 2009; Melnikov, Petriello 2006; Anastasiou, Dixon, Melnikow, Petriello 2004]

 NLO corrections to Z+jet / Z+2jet production known, e.g. included in MCFM [Campbell, Ellis], Z+jet at NLO matched with parton showers [Alioli, Nason, Oleari, Re 2010], NLO
 V+3jet results computed with BlackHat + SHERPA [Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre 2009, 2010], ROCKet + MCFM [Ellis, Giele, Melnikov, Kunszt, Zanderighi], NLO W+4jet results computed in leading-colour approximation [Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre 2010]

• Approximate NNLO results for Z+jet / Z+2jets for observables with large *K*-factors applying the LOOpSim method [Rubin, Salam, Sapeta 2010]

Tobias Kasprzik (KIT)

 $pp \rightarrow V + jet + X at NLO$

Importance of Higher-Order Corrections – QCD

Survey of theoretical predictions

- NLO (1-loop) corrections to single-Z production
 - matched with parton showers [Frixione, Webber 2006; Alioli, Nason, Oleari, Re 2008]
 - combined with soft-gluon resummation [Bozzi et al. 2008; Berge, Nadolsky, Olness 2006; . . .]
- NNLO (2-loop) corrections to the Drell-Yan process known fully differentially

[Catani, Cieri, Ferrera, de Florian, Grazzini 2009; Melnikov, Petriello 2006; Anastasiou, Dixon, Melnikow, Petriello 2004]

- NLO corrections to Z+jet / Z+2jet production known, e.g. included in MCFM [Campbell, Ellis], Z+jet at NLO matched with parton showers [Alioli, Nason, Oleari, Re 2010], NLO V+3jet results computed with BlackHat + SHERPA [Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre 2009, 2010], ROCKet + MCFM [Ellis, Giele, Melnikov, Kunszt, Zanderighi], NLO W+4jet results computed in leading-colour approximation [Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre 2010]
- Approximate NNLO results for Z+jet / Z+2jets for observables with large *K*-factors applying the LOOpSim method [Rubin, Salam, Sapeta 2010]

Calculate NLO EW corrections, because $\mathcal{O}(\alpha) \sim \mathcal{O}(\alpha_s^2)$

Higher-Order Corrections (II) – EW Contributions

EW Corrections (A summary)

NLO EW corrections known for off-shell single-Z production [Dittmaier, Huber 2009; Arbuzov et

al. 2008; Carloni Calame, Montagna, Nicrosini, Vicini 2007; Zykunov 2007; Baur et al. 2002; Baur, Keller, Sakumoto 1998; . . .]

$$pp \rightarrow \ell^- \ell^+ (+\gamma) + X$$

• Virtual EW corrections known for on-shell Z+jet production, including NLL and NNLL approximations [Kühn, Kulesza, Pozzorini, Schulze 2005]

$$pp \rightarrow Z^0 + jet + X$$

Improvement: Do calculation for intermediate Z boson (physical final state), include real- γ emission

pp
$$\rightarrow Z^0/\gamma + jet(+\gamma) + X \rightarrow \ell^- \ell^+ + jet(+\gamma) + X$$

- Study off-shell effects, allow for a realistic event definiton
- Photon radiation off final-state leptons (absent in on-shell approx.!)
 - \rightarrow Relevant deviations in the shape of differential cross sections for leptonic FS

LO Contributions

• LO contributions: 3 partonic channels, related by crossing symmetry

$$egin{array}{rcl} q_i \; ar q_i &
ightarrow & Z^0 \; {
m g}, & q = {
m u}, {
m d}, \ q_i \; {
m g} &
ightarrow & Z^0 \; q_i, \ {
m g} \; ar q_i &
ightarrow & Z^0 \; ar q_i \end{array}$$

• Sum over quark flavors (Example: $q \bar{q} \rightarrow Z^0 g$)

$$\sigma_{ ext{pp}(qar{q})}^{ ext{LO}} = \int_0^1 \mathrm{d}x_a \mathrm{d}x_b \sum_{q= ext{u}, ext{d}} \sum_{i=1}^{f_q} f_{q_i/ ext{p}}(x_a) f_{ar{q}_i/ ext{p}}(x_b) \; \hat{\sigma}_{q_iar{q}_i
ightarrow Z^0 ext{g}}^{ ext{LO}}$$

Partonic LO cross section

$$\hat{\sigma}_{ab}^{\text{LO}} = \frac{1}{2\hat{s}} \int_{\ell^- \ell^+ \text{jet}} d\text{PS} |\mathcal{M}_{\text{LO}}|^2, \quad \hat{s} = (p_a + p_b)^2$$

New: Virtual EW Corrections (I) Overwiev – 1PI Insertions

Box and pentagon insertions:

• We use the G_{μ} scheme to calculate the loop corrections:

$$lpha(0)
ightarrow lpha_{G_{\mu}} = rac{\sqrt{2}G_{\mu}M_{\mathrm{W}}^2}{\pi} \left(1 - rac{M_{\mathrm{W}}^2}{M_{\mathrm{Z}}^2}
ight), \quad \delta \mathcal{Z}_e
ightarrow \delta \mathcal{Z}_e - rac{1}{2}\Delta r$$

 \rightarrow Large universal contributions to $\partial \Sigma^{\gamma\gamma}(k^2)/\partial k^2|_{k^2=0}$ absorbed in the effective leading-order coupling constant

- Loops calculated using Complex-Mass Scheme [Denner, Dittmaier, Roth, Wieders 2005]
 - → Details on backup slide
- We use an **on-shell renormalization** prescription within the CMS.

- Reduction of pentagons directly to boxes avoiding small Gram determinants [Denner, Dittmaier 2003, 2005] ⊕ Passarino–Veltman [Passarino, Veltman 1979]
- Need to calculate complex scalar one-loop 4-point integrals [Denner, Dittmaier 2010]
- Take into account CKM dependence only at **leading order** (W-boson production) with a block-diagonal CKM matrix
- At NLO: $V_{ij} = \delta_{ij}$ in the loops \rightarrow No renormalization of the CKM matrix!

New: Real EW Corrections

- Soft singularities due to soft photons
- **Initial-state** collinear singularities due to collinear photon radiation off initial-state quarks → renormalization of PDFs
- **Final-state** collinear singularities due to photon-radiation off final-state leptons and quarks

→ Dipole subtraction for photon radiation off fermions [Dittmaier 1999]

Infrared Singularities

- Occur in real bremsstrahlung corrections as well as in loop diagrams
- Have to be regularized to make them calculable!
- Mass regularization for IR singularities: include small fermion masses m_{ℓ} , m_q and an infinitesimal photon mass λ (Neglect regulator masses in non-singular parts of the calculation!)
 - combine virtual and real corrections $\rightarrow \ln(\lambda)$ dependence drops out.
 - Initial-state collinear singularities absorbed into PDFs
 - Final-state collinear singularities give rise to $\ln(m_{\ell})$ and $\ln(m_q)$ terms in the cross section.

Important: Proper definition of observables!

NLO Electroweak Corrections – IR-Safe Observables (I) Photon Fragmentation Function

Important: Proper definition of observables!

Collinear photon-quark pair in the FS

- Photon-quark recombination to get rid of unphysical $\ln(m_q)$ terms
- Photon-gluon recombination will lead to soft gluon pole!
- Way out: Distinguish W/Z+jet from W/Z+ γ events \rightarrow discard events with $z_{\gamma} = \frac{E_{\gamma}}{E_q + E_{\gamma}} > 0.7 \rightarrow$ residual logs absorbed in **renormalized photon** fragmentation function [Buskulic et al. 1996; Glover, Morgan 1994; Denner, Dittmaier, Gehrmann, Kurz 2010]

$$D_{q \to \gamma}(z_{\gamma}) = \frac{\alpha Q_q^2}{2\pi} P_{q \to \gamma}(z_{\gamma}) \left(\ln \frac{m_q^2}{\mu_F^2} + 2\ln z_{\gamma} + 1 \right) + D_{q \to \gamma}^{\text{ALEPH},\overline{\text{MS}}}(z_{\gamma},\mu_F)$$

• Non-perturbative part $D_{q \to \gamma}^{\text{ALEPH}, \overline{\text{MS}}}(z_{\gamma}, \mu_{\text{F}})$ determined by the ALEPH experiment at CERN

Important: Proper definition of observables!

A collinear $e^{\pm} + \gamma$ pair cannot be distinguished experimentally

→ recombination necessary → $\ln(m_e)$ drops out (KLN theorem)

collinear-safe observable

A collinear $\mu^{\pm} + \gamma$ pair can be distinguished experimentally

- \rightarrow no recombination necessary
- $\rightarrow \ln(m_{\mu})$ survives
- \rightarrow physical contributions!
- \rightarrow enhanced corrections!

non-collinear-safe observable

Apply the **dipole subtraction formalism** extended to non-collinear-safe observables

[Dittmaier, Kabelschacht, TK 2008]

Numerical Results at the LHC (I)

Distribution of the invariant mass $m_{\ell\ell} = \sqrt{(p_{\ell^+} + p_{\ell^-})^2}$

- Typical Breit–Wigner shape of the LO distribution
- Final-state photon radiation systematically shifts events to smaller $m_{\ell\ell} \rightarrow$ huge positive corrections
- Note: QCD corrections uniform and of expected size

Z+jet vs. Single-Z Production – EW Corrections

Distribution of the invariant mass $m_{\ell\ell} = \sqrt{(p_{\ell^+} + p_{\ell^-})^2}$ [Plots by Alexander Mück; for details see Dittmaier, Huber, JHEP 1001:060,2010]

- Lineshape of LO Z+jet result disturbed due to jet recoil
- Relative EW corrections much larger in Z+jet production (blue, green) than in the inclusive case (red, violet)

Numerical Results at the LHC (II)

Transverse momentum of the leading jet (jet with highest p_T)

- Negative EW Sudakov logarithms at high energies
- Huge positive QCD corrections without adequate two-jet veto (green, violet)
- Two-jet veto stabilizes results (blue, cyan)

Numerical Results – Compare Z and W Cross Sections

Distribution of the transverse mass $m_{T,\ell\ell} = \sqrt{2p_{T,\ell}+p_{T,\ell}-(1-\cos\phi_{\ell\ell})}$

W-PRODUCTION CROSS SECTION:

Numerical Results - Compare Z and W Cross Sections

Distribution of the transverse mass $m_{T,\ell\ell} = \sqrt{2p_{T,\ell}+p_{T,\ell}-(1-\cos\phi_{\ell\ell})}$

Z-PRODUCTION CROSS SECTION:

Numerical Results - Compare Z and W Cross Sections

Distribution of the transverse mass $m_{T,\ell\ell} = \sqrt{2p_{T,\ell} + p_{T,\ell} - (1 - \cos \phi_{\ell\ell})}$

Z-PRODUCTION CROSS SECTION:

- $\sigma(W^+)/\sigma(Z) \sim 5$
- Phase-space-dependent EW corrections 100% bigger in Z-boson production
- QCD corrections of similar size for W and Z production

Tobias Kasprzik (KIT)

 $pp \rightarrow V + jet + X at NLO$

Summary & Outlook

- We have calculated the full NLO EW corrections to off-shell V+jet production at the LHC/Tevatron:
 - Consistent treatment of the W/Z-boson resonance (Complex-Mass Scheme)
 - All off-shell effects included
 - Non-collinear-safe treatment of final-state γ radiation from leptons
- Calculation fully differential → We can apply any (sensible) phase-space cuts and calculate any differential cross section that might be of interest.
- Good agreement with older on-shell calculation in the high-energy (Sudakov) regime
- Step towards computation of combined (two-loop) $\mathcal{O}(\alpha \alpha_s)$ corrections to the Drell–Yan process

Sizeable EW corrections to relevant observables in V+jet production → should be taken into account in an analysis of experimental data Sizeable EW corrections to relevant observables in V+jet production → should be taken into account in an analysis of experimental data

Future plans:

- Include final-state multi-photon radiation in a structure-function approach ($\sim -5\%$ corrections for inclusive Z-boson production in the resonant region)
- Combine our results with state-of-the-art MC generator?

Thank You!

Physical Setup – Definition of Observables

Definition of the physical final state:

- **(**) Recombination of photon and nearest lepton if $R_{\gamma,\ell} < 0.1 \rightarrow \tilde{p}_{\ell} = p_{\ell} + k_{\gamma}$
- Secombination of photon and jet (q, g) if $R_{\gamma,jet} < 0.5$
- **NLO QCD:** Recombination of two QCD partons to one jet if $R_{1,2} < 0.5$

Leptonic cuts

- Require $|y_{\ell}| < 2.5$ and $p_{T,\ell} > 25$ GeV for each final-state lepton
- Require $m_{\ell\ell} > 50 \,\text{GeV}$ (Z-boson production)

Jet observables in NLO QCD

- Require at least one hard jet with $|y_{jet}| < 2.5$, $p_{T,jet} > 25 \text{ GeV}$
- **Two-jet veto:** Discard events with two back-to-back jets, require $p_{T,2} < p_{T,1}/2$ \rightarrow reduction of (sizeable) tree-level V + 2 jet contributions
- Variable scale choice: constant scale $\mu_{\rm R} = \mu_{\rm F} = M_{\rm V}$, variable scale $\mu_{\rm R} = \mu_{\rm F} = \sqrt{M_{\rm V}^2 + p_{\rm T,had}^2} \rightarrow$ adjust scale to kinematics of hard process

Lepton-jet separation: Discard event if $R_{\ell,jet} < 0.5$

The Complex-Mass Scheme (CMS) for Unstable Particles [Denner, Dittmaier, Roth, Wieders 2005]

A problem with unstable particles

Naive implementation of finite width in gauge-boson propagator:

$$rac{-\mathrm{i}g^{\mu
u}}{q^2 - M_{\mathrm{W}}^2 + \mathrm{i}\epsilon}
ightarrow rac{-\mathrm{i}g^{\mu
u}}{q^2 - M_{\mathrm{W}}^2 + \mathrm{i}M_{\mathrm{W}}\Gamma_{\mathrm{W}}}$$

 Γ_{W} includes Dyson summation of self energies, mixing of perturbative orders \rightarrow might destroy gauge invariance (even at leading order!)

CMS universal solution that respects gauge invariance

- is valid in all phase-space regions

Straightforward implementation:

• LO:
$$M_V^2 \to \mu_V^2 = M_V^2 - iM_V \Gamma_V$$
, $\cos^2 \Theta_W = \frac{\mu_W^2}{\mu_Z^2}$, $V = W, Z$

- NLO:
 - Complex renormalization: $\mathcal{L}_0 \rightarrow \mathcal{L} + \delta \mathcal{L}$, bare (real) Lagrangian unchanged!
 - Evaluate loop integrals with complex masses