from $PP \rightarrow \ell^+ \ell^- + X$ A_{FB}

sources:

$$\begin{array}{ll} \bullet & q\bar{q} \to \gamma, Z \to \ell^+ \ell^- \\ \gamma - Z \text{ interference} & \sim Q_q \, a_q \, a_\ell \\ Z \text{ exchange} & \sim v_\ell \, v_q \, a_\ell \, a_q \end{array}$$

QED: $\gamma\gamma$ exchange (box diagrams) + initial–final γ emission

■ electroweak loop contributions to $q\bar{q} \rightarrow \ell^+ \ell^-$

● at large $m(\ell^+\ell^-)$:

dominant $\gamma - Z$ interference weak loops (~ box graphs) sensitive to new physics, eg. Z'

• around the Z resonance: $m(\ell^+\ell^-) \simeq M_Z$ A_{FB} determined by $\sum_q (q\bar{q}) \frac{v_\ell}{a_\ell} \frac{v_q}{a_q}$ $\longrightarrow \sin^2 \theta_W$ with $\delta \sin^2 \theta_W \simeq 0.0002$

WG Report 2000

Electroweak Physics WG 2000

Complications

at parton level:

- $\sin^2 \theta_W$ not unique, different for ℓ, u, d which $\sin^2 \theta$ to be measured? $\sin^2 \theta_\ell, \ \sin^2 \theta_{\overline{MS}}, \cdots$ differences are small, model dependent
- effective couplings v_f, a_f are complex

 $\sin^2 \theta_f \leftrightarrow \operatorname{Re} v_f / \operatorname{Re} a_f$

imaginary parts give additional contributions, under control, but model dependent

 incomplete at 2-loop order , QCD–electroweak terms missing at hadron level:

- need incoming quark direction $\rightarrow y(\ell^+\ell^-)$ cut
- other parton pocesses contribute
 photon induced $\gamma \gamma \rightarrow \ell^+ \ell^-$, $\gamma q \rightarrow \ell^+ \ell^- q$
- need QED evolution of parton distributions
- **•** need control of $(u\bar{u})/(d\bar{d})$

M. Huber, Thesis 2010