LHCb electroweak measurements: W, Z, low mass DY

Tara Shears, On behalf of the LHCb collaboration.

Overview W, Z production Measurement definitions

Introduction

Results: Z, W, ratios and charge asymmetry

Other ongoing work: low mass DY, other channels.

Conclusions

1. Introduction 2. Cross-sections

- 3. Other work
- 4. Conclusions

Overview W, Z production **Measurement definitions**

Fully instrumented within $1.9 \le \eta \le 4.9$ Trigger: $p_u > 3 \text{ GeV}$, $pt_u > 0.5 \text{ GeV}$, $m_{uu} > 2.5 \text{ GeV}$

1. Introduction

- 2. Cross-sections
- 3. Other work
- 4. Conclusions

Overview W, Z production Measurement definitions

8% of Z within LHCb acceptance

17% (16%) of W⁺ (W⁻) within LHCb acceptance

1. IntroductionOverview2. Cross-sectionsW, Z production3. Other workMeasurement definitions4. ConclusionsMeasurement definitions

Z, W: x of 10⁻⁴, 10⁻¹ (low mass $\gamma^* \rightarrow 10^{-6}$)

Overview W, Z production Measurement definitions

Cross-sections known to NNLO PDF uncertainty dominates Known to ~1% at y ~1.5-2, 6-8% at y~5 Low mass DY more uncertain.

Overview W, Z production Measurement definitions

Cancel or highlight PDF uncertainties with ratios R_{+} tests d_{V}/u_{V} ratio A_{W} tests difference between u_{V} and d_{V} R_{WZ} almost insensitive to PDFs

Overview W, Z production Measurement definitions

Definition of measured cross-sections:

$$\sigma(Z \rightarrow \mu \mu : 2 < \eta_{\mu} < 4.5, P_{T\mu} > 20 GeV, 81 < M_{\mu\mu} < 101 GeV)$$

(as function of Z rapidity)

$$\sigma(W \twoheadrightarrow \mu\nu: 2 < \eta_{\mu} < 4.5, P_{T\mu} > 20 GeV)$$

(as function of muon pseudorapidity)

Using 16.5 pb⁻¹ data, single μ trigger (p_T>10 GeV)

N_Z, N_{bkg} N_w, N_{bkg} Efficiencies Results

$$\sigma_{Z \to \mu\mu}(\Delta y) = \frac{N_{tot}^Z - N_{bkg}^Z}{\varepsilon_Z L}$$

Z selection

Z background estimation

Muon:

Z:

Good track quality (σ_p/p , χ^2 probability) p_T > 20 GeV 2.0 < η < 4.5

81 < m(μμ) < 101 GeV

Data, simulation

N_Z = 833

 ϵ_z = 1.00 (by definition to compare with theory)

N_z, N_{bkg} N_W, N_{bkg} Efficiencies Results

$$\sigma_{W \to \mu \nu} (\Delta \eta) = \frac{N_{tot}^W - N_{bkg}^W}{\varepsilon_W L}$$

W selection

W background estimation

N_z, N_{bkg} N_W, N_{bkg} Efficiencies Results

Muon:

Good track quality (σ_p/p , χ^2 probability) $p_T > 20 \text{ GeV}$ $2.0 < \eta < 4.5$ Impact parameter significance < 2 Σp_T in R= $\sqrt{(\Delta \eta^2 + \Delta \phi^2)}=0.5$ cone around $\mu < 2 \text{ GeV}$

Rest of event:

Invariant mass < 20 GeV Σp_T < 10 GeV

 ϵ_W = 55.0 ± 1.0%

(data driven, using Z events)

N_z, N_{bkg} N_W, N_{bkg} Efficiencies Results

Z data: points Z MC, W MC, QCD

N_{W+} = 7624 N_{W-} = 5732

Background sources: $Z \rightarrow \mu\mu$ (1 μ in acceptance) $Z \rightarrow \tau\tau$ $W \rightarrow \tau \nu$ Hadronic events

Data Simulation Data + simulation

Note: Background charge asymmetric, QCD background large.

Fit muon p_T spectrum in data to expected shapes for signal and background, extract N_{bkg+} , N_{bkg-}

$$\varepsilon_{Z} = A_{Z} \varepsilon_{Z}^{trig} \varepsilon_{Z}^{track} \varepsilon_{Z}^{muon} \varepsilon_{Z}^{selection}$$
$$\varepsilon_{W} = A_{W} \varepsilon_{W}^{trig} \varepsilon_{W}^{track} \varepsilon_{W}^{muon} \varepsilon_{W}^{selection}$$

Measurements made in kinematic acceptance

$$A_Z, A_W = 1$$

Note: as much information taken from data as possible

$$\varepsilon_{Z} = A_{Z} \varepsilon_{Z}^{trig} \varepsilon_{Z}^{track} \varepsilon_{Z}^{muon} \varepsilon_{Z}^{selection}$$
$$\varepsilon_{W} = A_{W} \varepsilon_{W}^{trig} \varepsilon_{W}^{track} \varepsilon_{W}^{muon} \varepsilon_{W}^{selection}$$

Determine from data (Z sample)

Tag: 1 identified muon having fired single muon trigger

Probe: 1 identified muon

Efficiency is **flat** in η , ϕ , p_T .

No evidence for charge bias

 $\epsilon_w = 72 \pm 1\%$ $\epsilon_z = 86 \pm 1\%$

(includes global trigger cuts on maximum multiplicity)

$$\varepsilon_{Z} = A_{Z} \varepsilon_{Z}^{trig} \varepsilon_{Z}^{track} \varepsilon_{Z}^{muon} \varepsilon_{Z}^{selection}$$
$$\varepsilon_{W} = A_{W} \varepsilon_{W}^{trig} \varepsilon_{W}^{track} \varepsilon_{W}^{muon} \varepsilon_{W}^{selection}$$

Reconstructed Long Track ?..... Reconstructed Add TT hits Muon stubs candidates / 3200 MeV 45E LHCb 40F preliminary 35 30 25 20 15 10E 80 100 120 60 DiMuon mass / MeV

Determine from data (Z sample)

Tag: 1 identified muon

Probe: 1 muon stub + TT hit (TT not used in tracking)

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies Results

(+, - different average efficiency due to different η distribution)

Determine from data (Z sample)

Tag: 1 identified muon

Probe:1 identified track

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies Results

Efficiency **flat** in η , ϕ , p_T No evidence of charge bias $\varepsilon_W = 98.2 \pm 0.5\%$ $\varepsilon_Z = 96.5 \pm 0.7\%$

truth level

$$\varepsilon_{Z} = A_{Z} \varepsilon_{Z}^{trig} \varepsilon_{Z}^{track} \varepsilon_{Z}^{muon} \varepsilon_{Z}^{selection}$$
$$\varepsilon_{W} = A_{W} \varepsilon_{W}^{trig} \varepsilon_{W}^{track} \varepsilon_{W}^{muon} \varepsilon_{W}^{selection}$$

Found before: Z: (simulation) 1.00 W: (data driven, using Z events) $55.0 \pm 1.0\%$

N_z, N_{bkg} N_w, N_{bkg} Efficiencies Results

Systematic errors (%):

Source	σ_Z	σ_{W+}	σ_{W-}
Background	0.1	3	5
Trigger efficiency	1	1	1
Muon id efficiency	0.7	0.5	0.5
Track efficiency	4	4	4
Selection efficiency	n/a	2	2
Luminosity	10	10	10
Total systematic error	11	11	12
Stat. error	4	1	1

Largest source is luminosity uncertainty Background: uncertainty large for W (shape variation in fit) Efficiencies: statistical error on data-driven method

N_z, N_{bkg} N_w, N_{bkg} Efficiencies Results

N_Z, N_{bkg} N_W, N_{bkg} Efficiencies Results

(note: x2 statistics coming soon)

Low mass Drell Yan $\rightarrow \mu\mu$ Z $\rightarrow ee, \tau\tau, Z+jet, Z p_T$

Backgrounds:

Inclusive b Inclusive c Misidentified muons

 $\begin{array}{l} \mbox{Selection:} \\ \mbox{Muon:} \\ & \mbox{Good track quality } (\sigma_p/p, \, \chi^2 \, \mbox{probability}) \\ & \mbox{p_T^{μ}} > 1 \ \mbox{GeV}, \, \mbox{p^{μ}} > 10 \ \mbox{GeV} \\ & \mbox{$2.0 < η^{μ}} < 4.5 \\ & \mbox{$A(p_T^{\mu}, \Sigma p_T^{0.5}) > 0.5$} \\ \mbox{$\gamma^*$:} \\ & \mbox{$M_{\mu\mu}$} > 2.5 \ \mbox{GeV} \end{array}$

Note: analysis ongoing; no results yet.

• Low Mµµ background dominated (more work needed)

• MCFM/Pythia give **very** different predictions at low $M\mu\mu$

Theory uncertainty:

PDFs; different behaviour and uncertainty with order of calculation; gluon essentially unconstrained by data below 10^{-4.}

DGLAP evolution not trustworthy in this region; gluon re-summation effects; near saturation regime?

Low mass Drell Yan $\rightarrow \mu\mu$ Z \rightarrow ee, $\tau\tau$,Z+jet, Z p_T

Work ongoing in other channels: $Z \rightarrow ee, Z \rightarrow \tau\tau$, Z+jet Work ongoing on $d\sigma(Z)/dp_T$

W,Z production measurements made with 16.5 pb⁻¹

- agreement with NLO
- update with \sim 36 pb⁻¹ in progress.

Work ongoing:

- Low mass Drell Yan
- Differential Z production as function of p_T
- Other Z decay modes, Z+jets.