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Preamble
These lectures are an initiation to the fun and quite intuitive "birdtrack technique", which

aims to address the color structure of QCD in a pictorial way, drawing color graphs named
birdtracks [1] rather than writing mathematical symbols carrying color indices. In four lessons
we will learn the basic rules, discuss color conservation and infinitesimal color rotations, learn
how to project on partonic color states, derive their Casimir charges... and at the same time
learn a little bit of representation theory.

We will consider SU(N) (with N Ø 3) as the symmetry group of QCD, i.e., N quark colors.
For general N , the birdtrack technique is not more complicated than for "real QCD" (N = 3).
On the contrary, working with a general parameter N usually brings a better understanding
than working with fixed N = 3. The birdtrack technique can be used as a handy tool
in virtually any SU(N) color calculation, whether it is evaluating simple color factors or
addressing complex color structures that may otherwise seem out of reach. I hope these
lessons will give you a glimpse of the unspeakable and profound satisfaction that drawing
birdtracks can bring.

Participation in these courses does not require any prior knowledge (not even in QCD),
except perhaps some notions of linear algebra, which will be recalled anyway. The lessons
include a list of trivial and very simple exercises to keep the focus. Doing these exercises is
mandatory to avoid superficial reading, and to learn how to use birdtracks in practice.

To go beyond these introductory lessons, the birdtrack drawer is encouraged to consult
the following helpful references. In Ref. [2], the color pictorial technique is illustrated by nice
examples and exercises. Ref. [3] gives a pedagogical presentation of birdtracks and addresses
a systematic method (di�erent from that described in lessons 3 and 4 of the present notes)
to find the projectors on the color multiplets of multiparton systems. Ref. [3] also contains
a substantial birdtrack bibliography. The color pictorial technique is a useful tool for QCD,
but it has much broader applications. The birdtrack lover should consult the valuable bible
on the uses of birdtracks in group theory, Ref. [1].
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Color graphs are drawn with the TikZ LATEX package (TikZ version 3.1.2).

1 Pedestrian introduction
1.1 The basic Lego bricks

The color structure of all interaction terms in the QCD Lagrangian can be expressed in
terms of three elementary bricks, or "legos". Using these legos, the color structure of any QCD
problem can in principle be worked out. The legos are defined and represented pictorially as

i j

a
= (T a)j

i ; i j

a
= ≠(T a)i

j ;
c • b

a
= ≠ifabc . (1)

As mentioned in the preamble, we consider the SU(N) symmetry group (N Ø 3). Quark and
antiquark color indices denoted by i, j . . . thus vary from 1 to N , and gluon indices denoted
by a, b . . . vary from 1 to N2≠1. The matrices T a (with a = 1 . . . N2≠1) are N ◊N Hermitian
matrices ((T a)† © t(T a)ú = T a), of zero trace,

Tr T a = 0 , (2)

and normalized so that
Tr (T aT b) = 1

2”ab . (3)

The fabc’s are the SU(N) structure constants defining the Lie algebra of SU(N),
Ë
T a, T b

È
= ifabc T c , (4)

from which one can easily show that fabc is totally antisymmetric in a, b, c.
To memorize the three legos (1), one may view them as representing respectively quark,

antiquark, and gluon scattering (the time arrow going from left to right) o� an external
gluon field (carrying the color index a) coupled from below, and remember that each lego
corresponds to the SU(N) generator of index a in the representation of the scattered parton,
namely, T a for a quark, ≠T a for an antiquark, and ta for a gluon, where the (N2≠1)◊(N2≠1)
matrices ta are defined by

(ta)bc = ≠ifabc . (5)

Note however that the meaning of a generator (which will be recalled in lesson 2) is not really
useful at this stage.

An important feature of the rules (1) is that each lego is antisymmetric under the exchange
of two lines. For instance, by exchanging any two lines of the first lego, one obtains a diagram
looking like the second lego (antiquark scattering o� a gluon coupled from below), which thus
gets a minus sign. Let us also remark that in (1), the color index of an outgoing quark (or
incoming antiquark) is written by convention as an upper index, and that of an outgoing
antiquark (or incoming quark) as a lower index. The usefulness of this convention will
become clear below.

In addition to (1), we introduce the pictorial notation for Kronecker’s of color indices:

i j = ”j
i ; a b = ”ab . (6)

For those who have not yet had the chance to get acquainted with QCD or even Feynman
diagrams, let us mention that in a "lego construction" (called color graph or birdtrack in what
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follows) built from the basic legos, the color index of an internal line is summed over all its
possible values. Together with Einstein summation convention, according to which an index
appearing twice in an expression is implicitly summed, we thus have, for an internal gluon
line:

i j

k l
(a) = (T a)j

i(≠T a)l
k =

i j
a

k l
a = ”ab

i j
a

k l
b

=

i j
a

k l
b

a
b , (7)

and similarly, for an internal quark line:

a i

b k
(j) = (T b)k

j(T a)j
i =

a i
j

b k
j = ”l

j

a i
j

b k
l

=

a ij

b k
l

j
l . (8)

Obviously, in pictorial notation summing over a repeated index amounts to connecting lines.
The convention that a line with an arrow pointing out of (into) a vertex carries an upper
(lower) index implies that for quarks and antiquarks, a repeated index always appears in
both the upper and lower positions. In other words, the convention just serves to distinguish
quarks and antiquarks and is consistent with the connection of quark lines respecting the
direction of the arrow.

In what follows, everything will be derived step by step, using only (1) and (6) for all
knowledge.

1.2 First trivial rules
The simplest way color appears in QCD is in the form of numbers called color factors. For

example, in the calculation of the qq æ qqg partonic cross section, one of the contributions
is proportional to Q

ca i j

k l

• a
R

db

Q

ca i j

k l

a
R

db

ú

, (9)

where each factor is a matrix element in color space (i.e., a color graph with specified external
indices), and every initial and final color index is implicitly summed. To calculate such color
factors in a pictorial way, we first need the following rule:

The complex conjugate of a color matrix element is obtained

pictorially by taking the mirror image of the associated graph (R1)
and reversing the arrows of quark and antiquark lines.

Exercise 1. Check that this rule indeed holds for each of the three legos, and then show
that it must be true for any matrix element built from these legos.

Using rule (R1) and then summing over repeated indices by connecting lines, the color
factor (9) becomes

•

. (10)
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Such graphs can be evaluated with the help of simple pictorial rules. The simplest ones read

=
i
i = ”i

i = N , (11)

= a
a = ”aa = N2 ≠ 1 , (12)

a
(i)

= (T a)i
i = 0 , (13)

a

(j)

b
(i)

= (T a)j
i(T b)i

j = 1
2

a b
. (14)

In the next sections, more interesting rules are obtained using the pictorial representations
of the Fierz identity and the Lie algebra.

1.3 Fierz identity
In index notation, the Fierz identity reads

”i
j ”l

k = 1
N

”i
k ”l

j + 2 (T a)i
k (T a)l

j , (15)

which corresponds pictorially to

k l

i j
= 1

N k

i

l

j
+ 2

i

k

j

l
. (16)

For more comfort, we may write the latter equation by removing the external indices:

= 1
N

+ 2 . (17)

It is important to note that in doing so, the mathematical meaning of the pictorial equa-
tion is changed: a color graph represents a color matrix element when the external indices are
specified, or the corresponding linear map (between the vector spaces spanned by the objects
carrying the initial and final indices) when external indices are removed. For instance,

i k
j l
a

A © Akl
ija (18)

are the matrix elements of the operator

A © A . (19)

Note that the pictorial rule (R1) for complex conjugation of matrix elements corresponds
to Hermitian conjugation at the operator level. Indeed, using (18) we have (using Aú = tA†)

(Akl
ija)ú = (A†)ija

kl =
k i
l j

a
A† , (20)
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but according to the rule (R1), this must coincide with the graph obtained by taking the
mirror image of (18) and reversing arrows. Thus, that transformation applied to the operator
A must give A†.

The Fierz identity (17) is thus a relation between linear maps of the vector space V ¢V to
itself, where V and V are the quark and antiquark vector spaces, respectively. In particular,
the l.h.s. of (17) is the identity operator:

= 1V ¢V . (21)

Exercise 2. Prove the Fierz identity (17) by using the following linear algebra result: If E is

a vector space of dimension n, pi (i = 1 . . . m) are m projectors (p2
i = pi) such that pi pj = 0

for i ”= j and
qm

i=1 rank(pi) = n, then
qm

i=1 pi = 1E. (Recall that rank(f) © dim[img(f)].)
Also use the fact that the rank of a projector is equal to its trace, and that the trace is
simply obtained pictorially by connecting the initial and final lines carrying the same type
of indices. For instance, the rank of the identity projector (21) can be written as :

rank(1V ¢V ) = Tr (1V ¢V ) = Tr
1 2

= = N2 , (22)

which coincides as it should with dim(V ¢ V ).

Let us now use the Fierz identity to derive simple pictorial rules.

Exercise 3. Multiply (16) by i j = ”j
i and sum over repeated indices to show that

= CF (CF = N2 ≠ 1
2N

) . (23)

Anticipating the next lessons, let us note that Eq. (23) can be written as T aT a = CF1V ,
where T aT a is called the Casimir operator in the fundamental (quark) representation, and
CF the (squared) quark color charge or simply "quark Casimir". (In any representation R,
the Casimir operator T a(R)T a(R) is proportional to the identity in that representation, as a
consequence of Schur’s lemma, see lesson 3.)

Exercise 4. Use the Fierz identity to obtain:

= ≠ 1
2N

. (24)

1.4 Lie algebra
1.4.1 Lie algebra in the fundamental representation

The matrices T a (called the generators of SU(N) in the fundamental representation, see
lesson 2) satisfy the Lie algebra (4), which can be expressed pictorially as

• = + . (25)

Exercise 5. Check it!

The identity (25) is the first example of "color conservation" that we encounter (see
lesson 2). We will now use this identity to find new rules.
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Exercise 6. Using only the pictorial rules derived so far, show that

• • = N . (26)

(Hint: to start, trade a gluon for a quark-antiquark pair by using (14).)

Exercise 7. Starting from (25), show in two di�erent ways the following rule:

• = N

2 . (27)

(Hint: multiply (25) either to the left by • , or to the right by , and sum over
appropriate indices.)

1.4.2 Lie algebra in the adjoint representation
A nice identity is the so-called Jacobi identity,

•• = • • + • • , (28)

which is another manifestation of color conservation.

Exercise 8. Prove the Jacobi identity in two ways:

(i) Verify that
Ë
T a,

Ë
T b, T c

ÈÈ
+

Ë
T b, [T c, T a]

È
+

Ë
T c,

Ë
T a, T b

ÈÈ
= 0 to infer the relation

fabefcde + fbcefade + fcaefbde = 0, and check that the latter is equivalent to (28);

(ii) The previous proof indicates that (28) is a direct consequence of the Lie algebra in the
fundamental representation (4), i.e. of (25). Thus, it should be possible to prove the
Jacobi identity (28) using only the pictorial rules derived so far. Try it! (Hint: use a
similar start as in Exercise 6.)

Exercise 9. Check that the Jacobi identity is nothing but the expression of the SU(N) Lie
algebra in the adjoint representation, namely,

Ë
ta, tb

È
= ifabc tc , (29)

where the matrices ta are defined by (5).

Anticipating the next lessons, we note that since the ta matrices obey the Lie algebra
and moreover satisfy (ta)† = ta and Tr ta = 0, they are SU(N) generators (lesson 2) in a
representation of dimension N2 ≠ 1 called the gluon or adjoint representation. The operator
tata is thus the Casimir operator (lesson 3) in the adjoint representation, and from Schur’s

lemma (lesson 3) we must have tata = CA1A (with A the gluon vector space of dimension
N2 ≠ 1, and CA the "gluon Casimir"). In fact, we already found tata, since Eq. (26) reads (in
index notation):

facdfbcd = (tc)ad(tc)db = (tctc)ab = N”ab ∆ tctc = N 1A . (30)

Therefore, the gluon Casimir is CA = N .

Exercise 10. Use the Jacobi identity to obtain the rule:

•
•

•
= N

2
• . (31)
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1.5 Sum up
In this lesson we have obtained the following set of simple pictorial rules :

= N ; = N2 ≠ 1 ; = 0 ; = 1
2

= CF ; • • = CA (R2)

= ≠ 1
2N

; • = N

2 ; •
•
•

= N

2
•

These rules will prove very useful in the next lessons. When one of the above loops
appears as a sub-diagram in a color graph, the latter can be simplified by contracting the
loop to its simpler r.h.s. expression given in (R2).

Exercise 11. Using the rules (R2), calculate the color factor (10).

Exercise 12. Evaluate the color graph • •
•

••

•
. (Borrowed from Ref. [2].)
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