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2 Color conservation, color rotations and SU(N) irreps
2.1 Color conservation pictorially

In lesson 1, we wrote the pictorial form of the Lie algebra, both in the fundamental and
adjoint representation (see (25) and (28)),

• = + , (32)

•• = • • + • • . (33)

The latter equations can also be written by stretching the incoming gluon line to the final
state (or the outgoing parton lines to the initial state). For instance, stretching the incoming
gluon in (32) to the final state, one obtains (due to the antisymmetry of the lego bricks under
the exchange of two lines)

0 =
•

+ + . (34)

Thus, for each lego the sum of gluon attachments to parton lines ‘before’ and ‘after’ the
interaction vertex gives the same result, and this holds independently of the way the lego is
represented in a time-ordered picture: either as a 1 æ 2 splitting (as in (32) and (33)), or
2 æ 1, or 3 æ 0, or 0 æ 3 (as in (34)).

This trivially generalizes to any operator constructed from the lego bricks, leading to the
pictorial representation of color conservation,

A = A , (35)

where an ellipse crossed by a set of parton lines denotes the sum of all attachments of the
"scattering gluon" to those lines.

Exercise 13. Although trivial, give a convincing proof of (35).

2.2 Color rotations
2.2.1 Finite SU(N) transformations

The special unitary group SU(N) is the Lie group of N ◊ N unitary matrices with unit
determinant,

U œ SU(N) … UU † = 1 and det U = 1 . (36)

Any element of SU(N) can be parametrized by

U(–) = ei–aT a
, (37)

where the matrices T a (a = 1 . . . N2 ≠ 1) are the Hermitian matrices introduced in lesson 1
(hence the name of SU(N) generators for those matrices). The real parameters –a may be
viewed as the "angles" of the "color rotation" U(–).

Exercise 14. Check that the matrix (37) indeed belongs to SU(N). (In fact, the exponential
parametrization (37) generates all elements of SU(N), see mathematics textbooks for a proof.)
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By construction, the QCD lagrangian is invariant under SU(N) transformations or "color
rotations". In order to address the color structure of QCD (in particular, to determine the
invariant multiplets of a parton system), we first consider SU(N) transformations of the
quark, antiquark and gluon "color coordinates".

Color rotations of quark and antiquark coordinates
Let us start with quarks and antiquarks. Under a given color rotation U(–) œ SU(N),

the quark coordinates (denoted by an upper index according to our initial convention, see
section 1.1) transform as

qÕ = U q … qÕ i = U i
j qj . (38)

When restricting to the color degree of freedom, antiquark coordinates are simply obtained
from quark coordinates by complex conjugation. In the same color rotation of angles –a,
antiquark coordinates thus transform as

qúÕ = Uú qú … (qúÕ)i = (Uú)i
j (qú)j . (39)

A standard convention is to denote complex conjugation by moving quark and antiquark
indices up and down, namely,

(qú)i © qi ; (Uú)i
j © U j

i , (40)

a convention that we have implicitly used from the beginning by assigning lower color indices
to antiquarks, see section 1.1. The transformation (39) of antiquark coordinates is then
written as

qÕ
i = U j

i qj . (41)

To complement the above convention, any quantity transforming as quark (antiquark)
coordinates is assigned an upper (lower) index. We readily verify that a product of the form
AiBi (implicitly summed over i) is SU(N) invariant. Indeed, (AiBi)Õ = U i

j U k
i AjBk = AiBi,

since U i
j U k

i = U i
j(Uú)i

k = U i
j(U †)k

i = (U †U)k
j = ”k

j.

Under two successive color rotations of angles –a and —b, quark coordinates transform as

q
–≠æ U(–) q

—≠æ U(—)U(–) q = U(“(–, —)) q . (42)

Indeed, since SU(N) is a group, the product U(—)U(–) must coincide with an element of
SU(N) of angles “c, the latter being fully determined by –a and —b.

Exercise 15. (To be done once in a lifetime.)
Let us recall the Baker-Campbell-Hausdor� formula for the product of two exponentials

of matrices,
eX eY = eX+Y + 1

2 [X,Y ]+ 1
12 ([X,[X,Y ]]≠[Y,[X,Y ]])+... , (43)

where the dots stand for higher-order terms in X and Y (all being nested commutators of
X and Y ). Using (43), show that the angles “a defined by (42) are given by “a(–, —) =
–a + —a + 1

2fabc–b—c + . . . , and find the next term in the series.

This exercise illustrates that the structure of SU(N) (with respect to the multiplication
law) is fully determined by the SU(N) Lie algebra (4).
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Color rotations of gluon coordinates
How should the N2 ≠ 1 gluon coordinates �a transform under a color rotation of angles

–a, when the N quark coordinates transform with the matrix U(–)? For each U(–) acting in
quark space, we must find a corresponding (N2 ≠ 1) ◊ (N2 ≠ 1) matrix Ũ(–) acting in gluon
space, in such a way that the "representation" U(–) æ Ũ(–) preserves the group structure.
Indeed, in the successive rotations of angles – and —, the gluon coordinates become

� –≠æ Ũ(–) � —≠æ Ũ(—)Ũ(–) � , (44)

but for consistency with (42), the same result should be obtained by a single rotation of
angles “(–, —), represented by Ũ(“(–, —)) when acting in gluon space. We thus need

Ũ(—)Ũ(–) = Ũ(“(–, —)) , (45)

with the same function “(–, —) as derived in Exercise 15.
It is clear that (45) will be satisfied by the matrices

Ũ(–) = ei–aT̃ a
, (46)

provided one can find (N2 ≠ 1) ◊ (N2 ≠ 1) matrices T̃ a (a = 1 . . . N2 ≠ 1) having the same
Lie algebra as the T a’s, namely,

Ë
T̃ a, T̃ b

È
= ifabc T̃ c . (47)

We know from lesson 1 that such matrices exist: the matrices ta defined by (5) satisfy (29).

A few remarks:

v The set of matrices U(–) = ei–aT a (i.e., the SU(N) group itself) acting on the quark and
Ũ(–) = ei–ata acting on the gluon are respectively called the fundamental and adjoint

SU(N) representations.

v The adjoint representation is real: Ũ(–)ú = e≠i–a(ta)ú = ei–ata = Ũ(–).

v If there are dR ◊dR matrices T a(R) (a = 1 . . . N2 ≠1) satisfying the SU(N) Lie algebra,Ë
T a(R), T b(R)

È
= ifabc T c(R), the matrices UR(–) = ei–aT a(R) define an SU(N) repre-

sentation of dimension dR, acting on objects with dR components while preserving the
group structure. The T a(R)’s are the SU(N) generators in the representation R.

v For N > 2, SU(N) representations do not exist for any dimension dR. For N = 3, the
possible dimensions are dR = 1, 3, 6, 8, 10, 15 . . .

v When there is no risk of confusion, an SU(N) (irreducible) representation is labelled
by its dimension in the case N = 3. For instance, the fundamental and adjoint SU(N)
representations are denoted by R = 3 and R = 8, with generators T a(3) = T a and
T a(8) = ta.

v The antiquark transforms under the complex conjugate of the fundamental represen-
tation, denoted by R = 3̄ and given by the set of N ◊ N matrices U(–)ú © ei–aT a(3̄),
with generators T a(3̄) = ≠(T a)ú. Although the representations 3 and 3̄ have the same
dimension N , they are not equivalent (for N > 2), i.e., U(–) and U(–)ú are not related
by a change of basis, and thus describe the transformations of di�erent objects.
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2.2.2 Infinitesimal color rotations
SU(N) is a Lie group for which infinitesimal transformations capture most of the group

structure [4]. In particular, it is su�cient to consider infinitesimal transformations to high-
light SU(N) representations (see section 2.3).

Let us consider a color rotation of infinitesimal angles ”–a. According to (37) and (38),
the quark transforms as

qÕ i = qi + i”–a (T a)i
j qj , (48)

from which the transformation of the antiquark directly follows (take the complex conjugate,
and recall that (T a)ú = tT a):

qÕ
i = qi ≠ i”–a qj (T a)j

i . (49)

Using (46), the gluon transforms as:

�Õ b = �b + i”–a (ta)bc �c . (50)

The infinitesimal shifts of the quark, antiquark and gluon coordinates thus read

”qi © qÕ i ≠ qi = i”–a i
a

, (51)

”qi © qÕ
i ≠ qi = i”–a i

a
, (52)

”�b © �Õ b ≠ �b = i”–a b
a

, (53)

where we introduced the pictorial notation for coordinates:

j © qj ; j © qj ; c © �c . (54)

Our basic legos (1) are defined as the SU(N) generators in the quark, antiquark and gluon
representations. Up to the factor i”–a, the legos are thus nothing but the infinitesimal shift
of the corresponding parton coordinates. In other words, in a color rotation of angles ”–a

the infinitesimal shift of parton coordinates is obtained pictorially (up to the factor i”–a) by
attaching a gluon of color a from below to the corresponding line.

Let us now rewrite the "color conservation identity" (35) as

i”–a A

a

= 0 . (55)

In (55), the sum of the infinitesimal shifts is obviously the infinitesimal shift of the incom-
ing multi-parton state. Thus, a parton system which is fully contracted over parton color
indices is SU(N) invariant. Such a system is called a color singlet state. Color conservation
(expressed pictorially as (35)) is equivalent to the SU(N) invariance of color singlet systems.
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Note that if we do not contract with external parton coordinates, the identity (55) reads

i
j

c
b

A = 0 , (56)

with specified external indices b, c, . . . , i, j, . . . Let us view the object carrying those indices,
Abc... j...

i... , as an SU(N) tensor, thus transforming under SU(N) as the product of parton
coordinates �b�c . . . qi . . . qj . . . Eq. (56) gives an alternative formulation of color conservation,
namely: all SU(N) tensors (constructed from the basic legos) are in fact SU(N) invariant

tensors.

Exercise 16. Check explicitly that the tensors

i
j = ”j

i , b
c

= ”bc , (57)

are invariant under finite color rotations.

Exercise 17. Express the SU(N) invariance under finite color rotations of the tensor

i

j
a = (T a)j

i (58)

to obtain the relation
Ũbc = 2Tr (T bUT cU †) , (59)

which determines the matrix elements Ũbc of a color rotation in the adjoint representation in
terms of its fundamental representation U .

2.3 SU(N) irreducible representations
Using the pictorial expression of color conservation and infinitesimal color rotations allows

one to address SU(N) irreducible representations in a rather intuitive way.
Consider a multi-parton system spanning a color vector space E of dimension n, and

suppose we have at disposal m projectors Pi constructed from the basic legos and satisfying
the conditions Pi ·Pj = 0 for i ”= j and qm

i=1 rank(Pi) = n, implying the completeness relation
qm

i=1Pi = 1E. (An explicit case was given in lesson 1 when proving the Fierz identity, see
Exercise 2.) We also suppose the projectors to be Hermitian, P†

i = Pi.
Let us apply an infinitesimal color rotation to the parton state (for the argument it is

su�cient to keep only the infinitesimal shift and drop the factor i”–a), and then insert on
the left and right the completeness relation :

inf.≠æ
shift

=
ÿ

i,j

Pi Pj

img(Pi) img(Pj)

, (60)

where a dashed vertical line indicates to which subspace the corresponding intermediate
multi-parton state belongs (here img(Pi) or img(Pj)).
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Using color conservation and Pi ·Pj = 0 for i ”= j, only the terms with i = j remain in the
double sum. As a consequence, the image space img(Pi) of the projector Pi is invariant under
any infinitesimal color rotation, and thus under SU(N). In a basis of E obtained by joining
bases of the invariant subspaces img(Pi) (which due to the hermiticity of Pi are orthogonal
to each other), any SU(N) color rotation will be block-diagonal,

U(E) =

Q

cccccccccccca

R

ddddddddddddb

. (61)

If each block cannot be further block-diagonalized, i.e., if the chosen set of projectors
is of maximal cardinality, each invariant subspace img(Pi) is said to transform under an
irreducible representation (irrep) Ri of SU(N). The tensor product describing the parton
system {qq̄g . . .} is decomposed into a sum of irreps:

3 ¢ 3̄ ¢ 8 ¢ . . . =
m
ü
i=1

Ri . (62)

In order to determine all irreps (also called multiplets) of a parton system, we need to find
a maximal, complete set of Hermitian and mutually orthogonal projectors (constructed from
the basic legos).

To conclude this lesson, let us give the pictorial representation of the SU(N) generators
T a(R) (a = 1 . . . N2 ≠ 1) in the representation R associated to the projector PR (i.e., acting
in the invariant subspace img(PR)),

T a(R) =

a

PR . (63)

Indeed, T a(R) defined in this way is a map of img(PR) æ img(PR), and i”–a T a(R) acting
on a parton state in img(PR) is the infinitesimal shift of this state under the infinitesimal
color rotation of angles ”–a.

Exercise 18. Check pictorially that the T a(R)’s satisfy the SU(N) Lie algebra.
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