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3 Diquark states, Schur’s lemma and Casimir charges
In this lesson, we present a systematic method [1] to find the set of Hermitian projectors

on the irreps of a parton system, which can in principle be applied to any parton system.
Here it is explained in the very simple case of a qq pair, and other examples will be addressed
in lesson 4.

3.1 Irreps of diquark states
Pictorially, a diquark state is represented as

i
j © qiqj . (64)

As we saw in lesson 2, finding a basis of the vector space {qiqj} © V ¢ V (of dimension N2)
where all color rotations (represented by N2 ◊ N2 matrices) are block-diagonal (and cannot
be further block-diagonalized) amounts to finding a maximal and complete set of Hermitian,
mutually orthogonal projectors Pi.

The case of diquarks being very simple and well known, let us immediately give the result
for the relevant set of projectors. It is composed of two projectors corresponding to the
symmetrizer and anti-symmetrizer (over the two quark indices), given respectively by:

PS = 1
2 ( + ) © ; PA = 1

2 ( ≠ ) © . (65)

For a system {qiqj . . . qp} made up only of quarks, representation theory [5] tells us that the
bases of the SU(N) invariant (and irreducible) subspaces are given by linear combinations of
qiqj . . . qp having di�erent symmetry properties in the permutation of indices. In the present
case of two quarks, we can build either a totally symmetric or totally antisymmetric linear
combination of qiqj, leading to the set (65) of projectors.

Exercise 19. Verify that PS and PA form a complete set of Hermitian projectors, which are
mutually orthogonal. Calculate their ranks.

Exercise 20. img(PS) and img(PA) are the subpaces spanned by V ij
S and V ij

A defined by

V ij
S = (PS)ij

kl qkql = i
j = 1

2(qiqj + qjqi) , (66)

V ij
A = (PA)ij

kl qkql = i
j = 1

2(qiqj ≠ qjqi) . (67)

Check that img(PS) and img(PA) are invariant under SU(N) (which we know from lesson 2),
by writing how V ij

S and V ij
A transform under finite color rotations (thus showing that they

are SU(N) tensors of rank 2).

In summary, we have the completeness relation

= PS + PA = + , (68)

and the product of two fundamental representations decomposes into a sum of irreps as

N ¢ N = N(N + 1)
2 ü N(N ≠ 1)

2 , (69)
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where only the dimensions of the irreps are mentioned. Note that in general, knowing the
dimension of an irrep is not su�cient to fully determine the irrep, as illustrated by the
following exercise.

Exercise 21. For N = 3, the relation (69) reads 3¢3 = 6ü3, but the generators of the irrep
of dimension 3 acting on the subspace spanned by V ij

A are equivalent to ≠(T a)ú = ≠(tT a), i.e.,
V ij

A does not transform under SU(3) as a quark, but as an antiquark. (Thus, (69) is commonly
written as 3 ¢ 3 = 6 ü 3̄.) Prove this by trading the three independent components of V ij

A

for the 3-vector Bk © 1
2‘ijkV ij

A (with ‘ijk the Levi-Civita tensor of rank 3) and by evaluating
the shift ”Bk under an infinitesimal color rotation.

Let us now suppose that we do not know anything about representation theory, and that
we therefore do not know from the start the set of Hermitian projectors. We describe below
a systematic method to find them. In the qq case, the method is obviously not the most
economical, but an advantage of this method is that it can be applied to any parton system
composed of quarks, antiquarks and gluons (as we will see in lesson 4).

The general procedure consists of three steps:

(i) Find the maximal number of linearly independent operators (built from the basic legos,
thus being SU(N) invariant tensors when specifying external indices) mapping the
vector space to itself.

In the present case of the vector space V ¢ V , an operator (or tensor) of this type can be
expressed in terms of graphs of the generic form

•

•
. (70)

Such graphs can be replaced by (linear combinations of) simpler graphs using the following
algorithm.

First, we can get rid of any three-gluon vertex appearing in the graph by using the identity
(prove it!)

• = 2
3

+
4

. (71)

The graphs then reduce to (linear combinations of) graphs where any internal gluon connects
at both ends to quark lines.

Second, every internal gluon can be removed with the help of the Fierz identity (17). So
we end up with graphs with four external quark lines (together with airborne quark loops
that simply contribute to an irrelevant global factor N ¸) and without gluons. There are only
two ways to connect the four external quark lines, and this proves that there are only two
independent tensors mapping V ¢ V to itself, namely,

1 © ; X © . (72)
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(ii) Find the "multiplication table" between these operators, and infer the minimal polyno-
mial and eigenvalues of the most interesting one(s).

The multiplication table of the set {1, X} has only one non-trivial entry,

X2 = = = 1 . (73)

The characteristic equation of the operator X is X2 ≠ 1 = 0. The minimal polynomial of X
is thus x2 ≠ 1 = (x ≠ 1)(x + 1), which is split with simple roots. From basic linear algebra,
it follows that X can be diagonalized (which is not a surprise since X is clearly Hermitian)
and has eigenvalues {⁄1, ⁄2} = {1, ≠1}.

In some basis of {qiqj} © V ¢ V , the matrix representation of X thus reads

X =

Q

ccccca

⁄1

⁄1
⁄2

⁄2

R

dddddb
. (74)

(iii) Express the projectors on the corresponding eigenspaces in terms of the SU(N) invariant
tensors.

In the above basis, the projectors P⁄1 and P⁄2 on the eigenspaces of X are

P⁄1 =

Q

cccca

1
1

0

0

R

ddddb
; P⁄2 =

Q

cccca

0
0

1

1

R

ddddb
. (75)

Their explicitly SU(N) invariant form follows from the identities X = ⁄1P⁄1 + ⁄2P⁄2 and
1 = P⁄1 + P⁄2 , or directly from a mere observation of the matrix X given in (74),

P⁄1 = X ≠ ⁄21

⁄1 ≠ ⁄2
= 1

2(1+ X) = PS ; P⁄2 = X ≠ ⁄11

⁄2 ≠ ⁄1
= 1

2(1≠ X) = PA . (76)

We thus recover the projectors (65) without any prior knowledge of representation theory.
Note that in the above derivation, the resulting projectors satisfy all requirements by construc-

tion: they are Hermitian and mutually orthogonal, they form a complete set (PS + PA = 1),
and they cannot be reduced into a sum of more SU(N) invariant projectors (since this would
imply that there are more than two independent tensors mapping V ¢V to itself). Therefore,
PS and PA must project onto the irreducible representations of diquark states.

Let us end this section by two important remarks:

v Obviously, the number of projectors (i.e., the number of irreps) cannot exceed the
number of independent tensors determined in step (i), nirreps Æ ntensors. For diquarks, we
have nirreps = ntensors, but for more complicated systems we may have nirreps < ntensors.
This happens when some of the independent tensors are not Hermitian and therefore
cannot contribute to the construction of Hermitian projectors. This will be the case for
the qqq system considered in lesson 4.
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v When nirreps < ntensors, one might naively think that nirreps coincides with the number of
independent tensors that are Hermitian, but this is not the case. Indeed, the projectors
are linear combinations of some subset of the independent tensors, and the tensors
of this subset are thus linear combinations of the projectors. Since the projectors are
not only Hermitian but also commute between them, the same must be true for the
independent tensors of the subset. We infer that in general, it is the largest subset of
commuting Hermitian operators found among the independent tensors that is used to
construct the projectors, and thus determines the number of irreps.

3.2 Schur’s lemma
Consider an invariant tensor A mapping the irreps R1 and R2 of respective vector spaces

W1 and W2,

A = R1 R2 . (77)

Since A is an invariant tensor we can use color conservation:

i”–a

a

R1 R2 = i”–a

a

R1 R2 . (78)

In the l.h.s. of (78), the infinitesimal color rotation acts in the irrep R1 (as is pictorially
obvious, it maps img(PR1) to itself, see lesson 2). The same color rotation acts in the irrep
R2 in the r.h.s. of (78). For finite color rotations, (78) thus reads

’ U(–) œ SU(N) , A UR1(–) = UR2(–) A . (79)

The condition (79) is the starting assumption for stating Schur’s lemma, which consists
of two parts (see e.g. Ref. [4] for a proof):

v if R1 and R2 are inequivalent irreducible representations, then A = 0.

This can be proven by showing that if A ”= 0, A must be an invertible square matrix, hence
÷ A : ’ –, UR1(–) = A≠1UR2(–)A, i.e., R1 and R2 are simply related by a change of basis,
which is the definition of equivalent representations.

Viewing the tensor A represented pictorially in (77) as the "evolution" of a parton system,
we see that in absence of interaction with external color fields, a parton system may change
its composition, but always remains in equivalent irreps.

v if W1 = W2 (i.e., the initial and final parton content is the same) and R1 = R2 © R,
then A is proportional to the identity operator in the irrep R (given by 1R = PR),

R R = c R = c PR . (80)

The latter equation can be interpreted as follows. Suppose we prepare an incoming multiplet
R and try to mix the basis states of this multiplet with the help of an invertible matrix
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(represented by the middle blob in the l.h.s. of (80)), which is thus a map of img(PR) æ
img(PR). Due to Schur’s lemma (80), up to an overall factor we get exactly the same states.
The basis states of a multiplet are uniquely defined.

Both parts of Schur’s lemma are very important results, useful for simplifying calculations
and also for intuition.

To end this section, let us mention that when R1 ”= R2, a non-zero tensor A of the form
(77) is called a transition operator (for the transition R1 æ R2). In this case, Schur’s lemma
can be reformulated as:

v There is a transition operator A between R1 and R2 ”= R1 if and only if R1 and R2
are equivalent irreps, and A is then a similarity transformation between the two irreps,
UR1(–) = A≠1UR2(–)A. (The reciprocal is trivial: if R1 and R2 are equivalent, there
exists a non-zero operator A such that UR1 = A≠1UR2A, thus mapping img(PR1) æ
img(PR2), i.e., there is a transition operator A between R1 and R2.)

Exercise 22. When R1 and R2 are di�erent but equivalent irreps, show that the transition
operator between R1 and R2 is uniquely defined (up to an overall factor).

We will see examples of transition operators in lesson 4, when discussing the qqq system.

3.3 Casimir charges
In lesson 2 we gave the pictorial expression (63) of SU(N) generators T a(R) in the irrep

R. The Casimir operator in this representation is defined by T a(R)T a(R), which from Schur’s
lemma (80) must be proportional to 1R = PR, with a proportionality coe�cient named the
Casimir charge CR,

T a(R)T a(R) = PR = CR PR . (81)

Unlike the generators T a(R), the Casimir operator commutes with all SU(N) transformations.
In lesson 1, we met the Casimir operators T aT a = CF1V and tata = CA1A in the fundamental
(quark) and adjoint (gluon) representations.

Exercise 23. Show that the global Casimir charge CR of a color state R of two partons (of
individual Casimir charges C1 and C2) is given by

CR = C1 + C2 + v12(R) , (82)

where the color "interaction potential" v12(R) of the parton pair in irrep R is defined by

v12(R)PR © ≠2 PR = ≠2 PR . (83)

What is the generalization of (82) to a system of n > 2 partons?

Exercise 24. Calculate the Casimir charges of the two diquark irreps (associated with the
projectors PS and PA) as a function of N . In which color state is the color interaction potential
attractive?

19/25


	Pedestrian introduction
	The basic Lego bricks
	First trivial rules
	Fierz identity
	Lie algebra
	Sum up

	Color conservation, color rotations and SU(N) irreps
	Color conservation pictorially
	Color rotations
	SU(N) irreducible representations

	Diquark states, Schur's lemma and Casimir charges
	Irreps of diquark states
	Schur's lemma
	Casimir charges

	Color states of q , qg and qqq systems
	q 
	qg
	qqq


