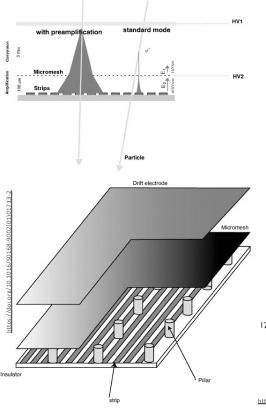
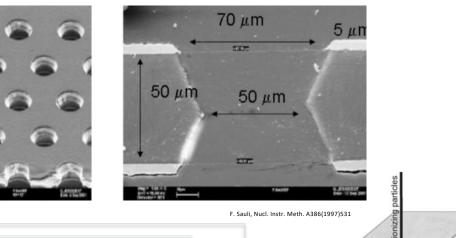


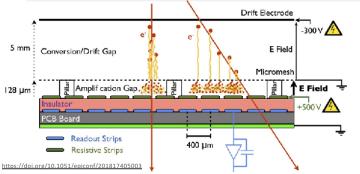
Projeto Temático 2020/04867-2 Kick-off Meeting

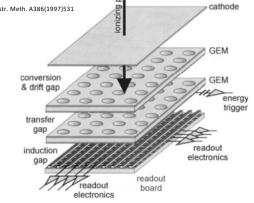
Marco Bregant / Tiago Fiorini da Silva WG 5.1: MPGD sensors development and applications


Que são MPGD, que é um GEM

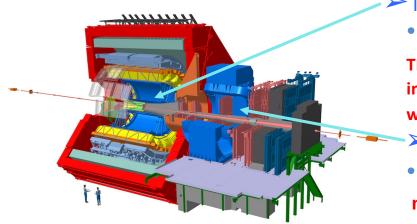
HEPIC


Micro Pattern Gas Detector


os mais conhecidos:


MicroMega

Gas Electron Multiplier


MPGD, como tudo começou: o upgrade de ALICE para o run3

Since right after the detector entered in data taking (2010), it was clear that starting from Run3 (the LHC period started now) ALICE should plan to operate at higher rate, recording all MB events

Goal set: 50kHz in Pb-Pb (~10nb⁻¹ in Run3 and Run4)

Detectors and electronics would require an upgraded during Long Shutdown 2 ("2020")

Time Projection Chamber (TPC)

• **<u>GEM</u>** readout plane, high rate capability, continuous readout.

TPC electronics used till run2 was not made to amplify negative charge input (as GEMs provides) and cannot cope with the higher rate and with the continuous readout operation planned

Partnership IFUSP - LSI (EP-USP)

Muon Chamber (Forward muon spectrometer)

• Higher rate capability, new acquisition electronics chain in ALICE **new electronics was needed**

TPC required a new readout, MCH too.

A common project to design a new ASIC: SAMPA

Convergence of paths

The group is developing an ASIC for GEM-based TPC, prototype of the basic block are coming...

would be nice to have a GEM-based detector to try them (especially CSA) with a real detector.

A young, nevertheless expert, researcher is moving from Europe to São Paulo for familiar reasons, he is looking for a local group to continue his research: gaseous detectors, namely MPGD, GEMs

A PERFECT MATCH!

Official start of HEPIC activity with MPGD/GEM A dedicated Lab is prepared and equipped.

Desenvolvimento em MPGD para

experimentos futuros

Large ton dual-phase (PandaX-4T, LZ, DarkSide -20k, Argo 200k, ARIADNE, ...)
 Light dark matter, solar axion, 0nbb, rare nuclei&ions and astro-particle reactions, Ba tagging)
 R&D for 100-ton scale dual-phase DM/neutrino experiments

"The 2021 ECFA detector research and developement roadmap," 2021, doi: 10.17181/CERN.XDPL.W2EX

2035-

....

		DRDT	< 2030	2030-2035	2040	2040-2045	>2045
	Rad-hard/longevity	1.1	•		•	• •	• • •
Muon system	Time resolution	1.1		i i	•	• •	
Proposed technologies: RPC, Multi-GEM, resistive GEM, Micromegas, micropixel Micromegas, µRwell, µPIC Inner/central tracking with PID	Fine granularity	1.1	• •	• • •	•	• •	• • •
	Gas properties (eco-gas)	1.3		•		•	000
	Spatial resolution	1.1	• •	• • •	•	••	ŎŎŎ
	Rate capability	1.3	• •	• • •	•	• •	• • •
	Rad-hard/longevity	1.1					
	Low X _o	1.2		•			
	IBF (TPC only)	1.2				ŎŎŎ	
Proposed technologies: TPC-(multi-GEM, Micromegas, Gridpix), drift chambers, cylindrical layers of MPGD, straw chambers	Time resolution	1.1	• •	•	ē	i i i	
	Rate capability	1.3	• •	•	•	• • •	
	dE/dx	1.2		•			
	Fine granularity	1.1	• •				

- 2070

DDDT

Must happen or main physics goals cannot be met

Important to meet several physics goals

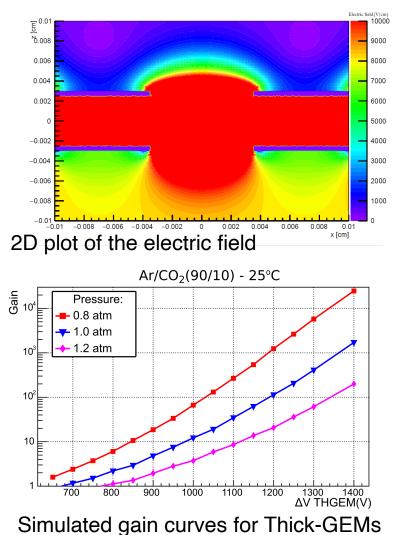
Desirable to enhance physics reach

R&D needs being met

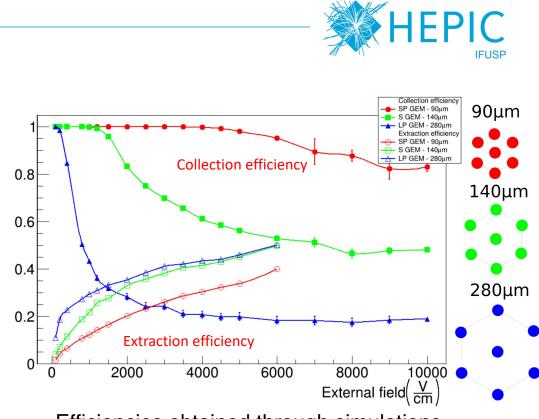
HEPIC

. 2045

		RD51 – Micropattern Gas Detectors								
	WG1 New Structures and Technologies	WG2 Detector Physics and Performance	WG3 Training and Dissemination	WG4 Modelling of Physics Processes & Software Tools	WG5 Electronics for MPGDs	WG6 Production and Industrialisation	WG7 Common Test Facilities			
Objectives	Design optimization Development of new geometries and techniques	Common test standards Characterization and understanding of physical phenomena in MPGD	Organisation of dissimination and training events for the MPGD community	Development of common software and documentation for MPGD simulations	Readout electronics optimization and integration with MPGD detectors	Development of cost-effective technologies and industrialization	Sharing of common infrastructure for detector characterization			
	Large Area MPGDs	Common Test Standards	Topical Workshops	Algorithms	FE electronics requirements definition	Common Production Facility	Testbeam Facility			
Tasks	Design Optimization New Geometries Fabrication	Discharge Protection	Schools (Eletronics, Simulation,)	Simulation Improvements	General Purpose Pixel Chip					
		Ageing & Radiation			Large Area Systems with Pixel Readout	Industrialization				
	Development of Rad-Hard	Hardness Charging up	Academy- Industry Matching	Common Platform (Root, Geant4)	Portable Multi-	moustraiizadon	Irradiation Facility			
	Detectors	and Rate Capability	Events		Channel System	Collaboration				
	Development of Portable Detectors	Study of Avalanche Statistics	Dissimination of MPGD applications	Electronics Modeling	Discharge Protection Strategies	with Industrial Partners				



GEM-based detectors



Simulations

Efficiency

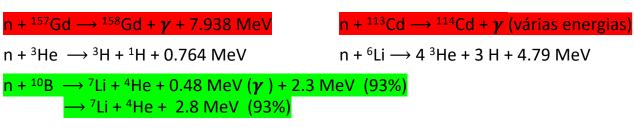
Efficiencies obtained through simulations

GEM-based detectors

APPLICATIONS

Thermal neutron GEM detector

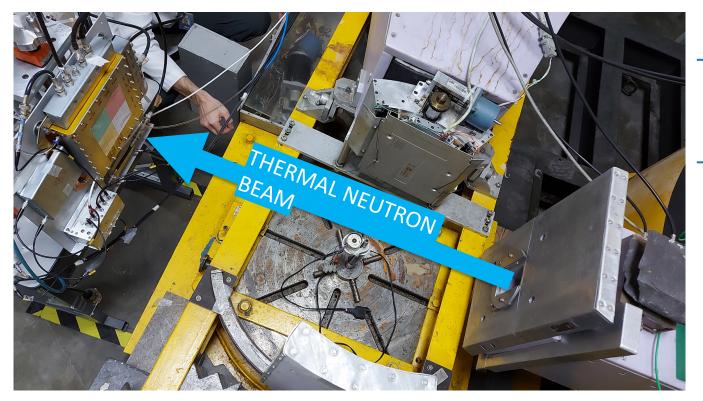
Cathode ¹⁰B4C layer


Aluminium lid

Resistive chains

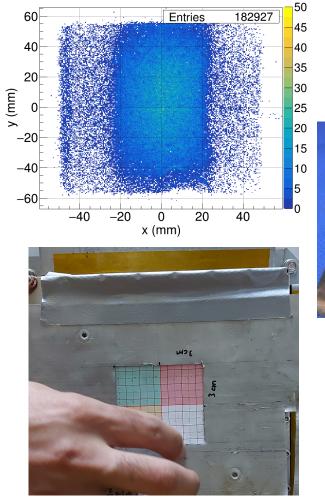
resistive chains connectors

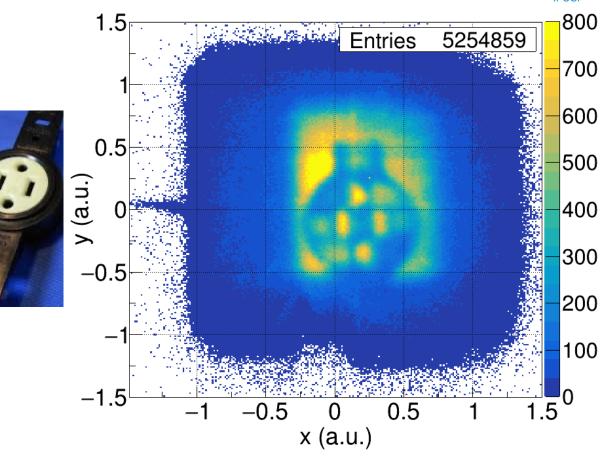
Cross sections at 25.2 meV: $^{113}Cd \rightarrow 20600 \text{ b}$ $^{157}Gd \rightarrow 254000 \text{ b}$ $^{3}He \rightarrow 5327 \text{ b}$ $^{10}B \rightarrow 3837 \text{ b}$ $^{6}Li \rightarrow 940 \text{ b}$


READOUT plane

GEMs

Thermal neutron GEM detector

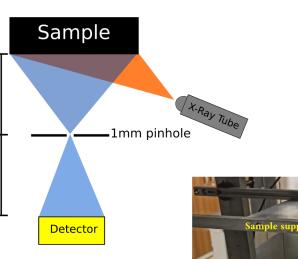



- → 1.399 Å (41.80 meV) neutrons from diffractometer beam line.
- → 6,22(19)x10⁴ n/cm²s⁻¹ neutron flux, measured using ¹⁹⁷Au(n, γ)¹⁹⁸Au reaction.

Neutron images (Lucas' dissertation)

One of the fist thermal neutron image produced with our prototype

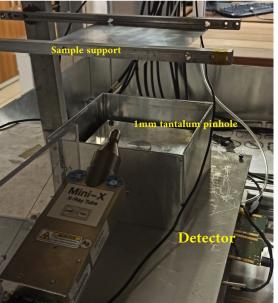
https://doi.org/h6st



X-ray Detector

First round Geovane's Master project

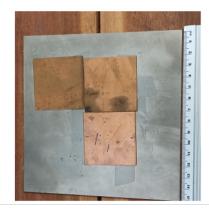
- Triple-GEM with strip read-out (256 strips for each dimension)
- 100 cm² active area
- Ar/CO2 (70/30) at atmospheric pressure
- Gain of the order of 10⁴
- Detector field of view limited by the 1 mm tantalum pinhole for near field images
- Acquisition rate ≈ 250 Hz (APV25 readout)

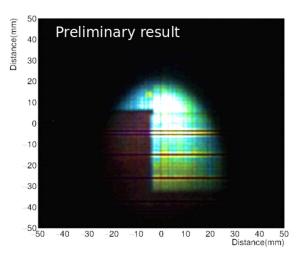

CJ

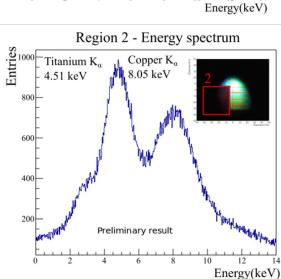
0

Ē

CJ


10





X-ray Detector

Test sample of a titanium plate with cooper sectors

Region 1 - Energy spectrum

Preliminary result

Copper K_{α} 8.05 keV

10

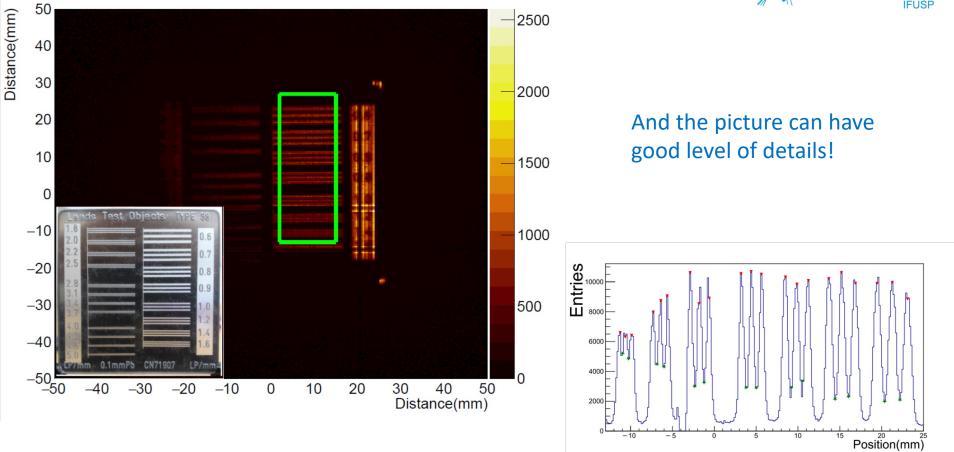
12

Entries 5200

2000

1500

1000


500

Capability to measure energy: Different chemical elements may be identify in the image! ("colour photo" in the X-ray range)

X-ray (Geovane dissertation)

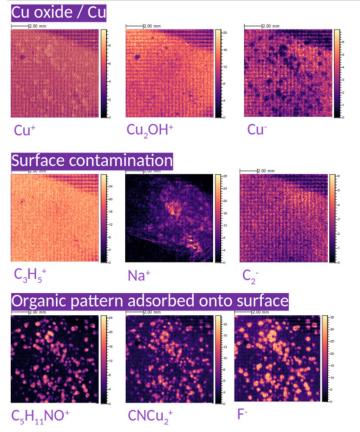
GEM AGING AND DEGRADATION STUDIES

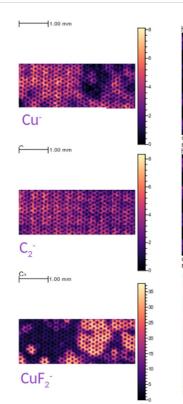
Longevity and materials

What happens to the detector when irradiated?

Goal: Develop a deeper understanding on aging and degradation processes of Gas Electron Multipliers (GEMs).

Challenges: Definition of controlled environment
Partners: Univ. of Nottingham and NPL.
Motivation: Enable longer lifetime and stability.
The new idea: Use of advanced surface analysis.
Who: Research line of Tiago + Thiago (doctorate student)



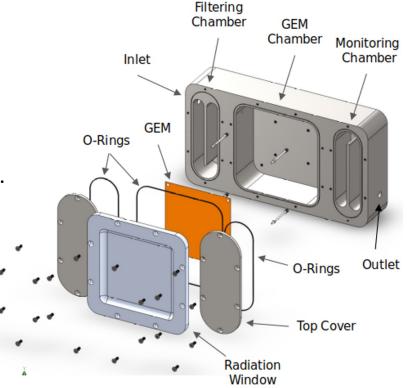

Analysing GEM foil modification

e.g. ToF-SIMS surface analysis

made at Nottingham University, our collaborators in this activity

F-MC: 15; TC: 1.080e+005

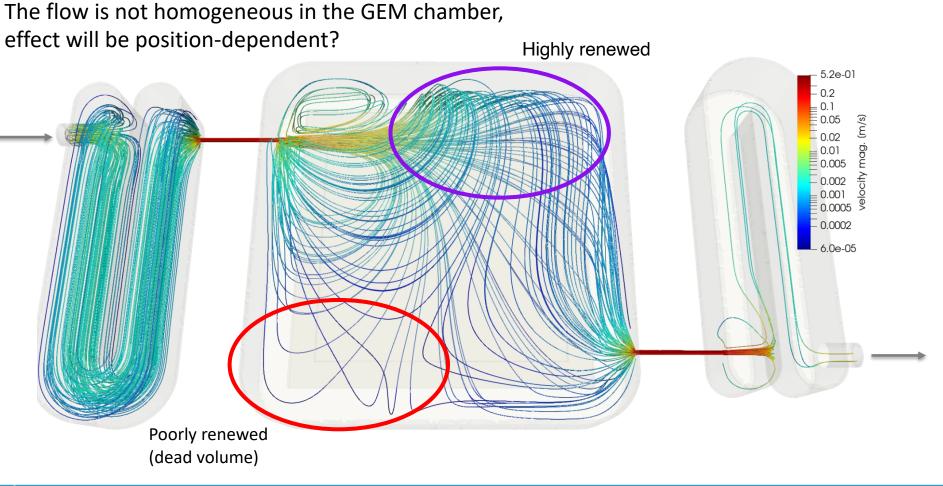
There is evidence of kapton redeposition!


Analysing contaminants in the gas

Controlled aging

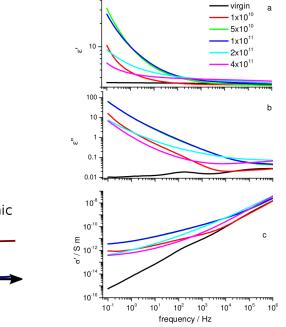
An ad hoc designed degradation chamber

- Stainless steal chamber
 - Clean ambient and avoid degassing.
- Inlet/Filtering Chamber
 - Filed with purifying materials.
 - Removal of eventual H2O and O2 contamination.
- Outlet/Monitoring chamber
 - Environmental sensors:
 - Temperature and pressure.
 - Gas quality monitoring:
 - H2O, O2 and **H2**.
- Both attached to the GEM chamber
 - To avoid tubes.

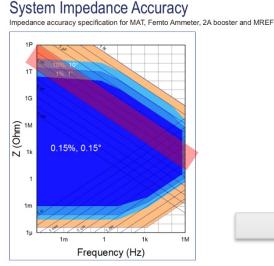


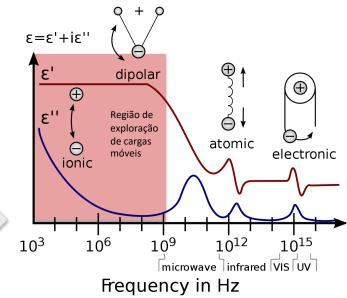
Analysing contaminants in the gas

Controlled aging



Diagnóstico não invasivo


Goal: Develop a non-invasive diagnostic tool for GEM based detectors to enable periodic check.
Challenges: Definition of protocols and standards
Motivation: Enable sanity check of the ALICE TPC.
The new idea: Exploit dielectric relaxation spectroscopy
Who: Research line of Tiago + Thiago (doctorate student)


Daniel Severin. "Study of the degradation process of polyimide induced by high energetic ion irradiation". https://d-nb.info/990901416/34

Equipamento aprovado como EMU

*High Voltage option module provides up to 10X higher impedance than shown *Femto ammeter and MREF is used for dielectrics (1 pF to 10 nF) and for high impedance *2A booster is used for very low impedance measurements (sub 100 mohm) *Faraday cage is recommended for dielectric and high impedance measurements

ALTERNATIVE FABRICATION METHODS

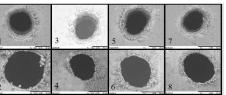
Experimenting new shapes

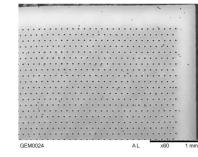
Locally: using Laser Ablation

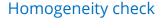
In collaboration with USP Engineering Faculty

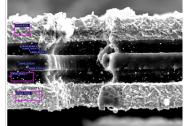
Goal: Develop a self-sufficient production of Gas Electron Multipliers (GEMs).

Challenges: Microfabrication with homogeneous quality Motivation: Enable the GEM production in different shapes, quicker turn-around, reducing the costs of prototyping. The new idea : Use of laser ablation for fast production.


Who: Research line of Tiago + Eduardo (Master Student)

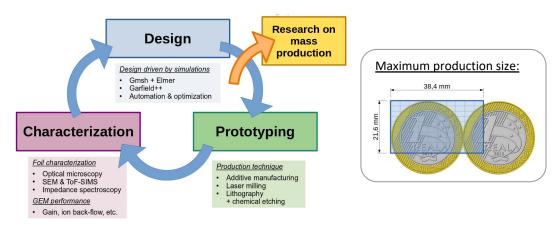



Method: Laser milling Why? - New, clean (free of KOH) and fast

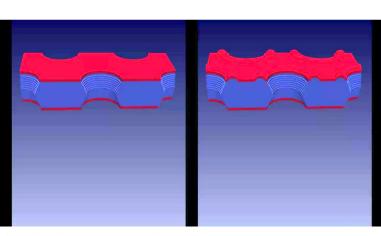

Laser parameter optimization

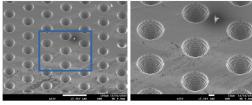
Cross-section view

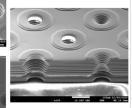
Tecnology transfer:



3D printing of MPGDs

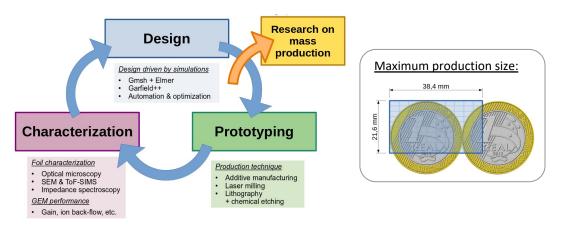

HEPIC


In collaboration with Univ. of Nottingham and NPL.


Goal: Enable fast prototyping for tests of new geometries. Smooth integration between modelling and tests.

Challenges: Multi-material printing in high-resolution. Motivation: Suppression of charging up, ion backflow and

mitigation of degradation.

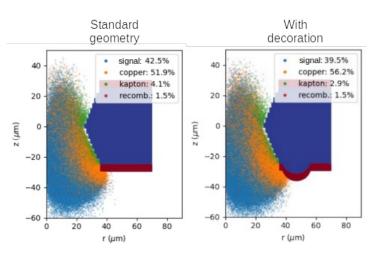

Who: Tiago + UoN collaborators

3D printing of MPGDs

In collaboration with Univ. of Nottingham and NPL.

Goal: Enable fast prototyping for tests of new geometries. Smooth integration between modelling and tests.

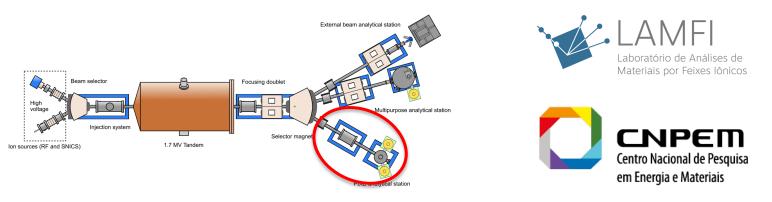
<u>Challenges:</u> Multi-material printing in high-resolution. <u>Motivation:</u> Suppression of charging up, ion backflow and mitigation of degradation.


Who: Tiago + UoN collaborators

What are possible benefits achievable with micro-sized decorations:

- 7% reduction in the signal intensity
- 29% of reduction of electron hit in the kapton (charging up)

Electron destination:

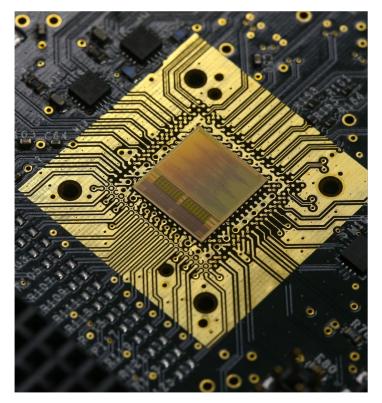

Testing detectors in stress conditions

RADIATION HARDNESS

Proton beam line for tests of radiation hardness

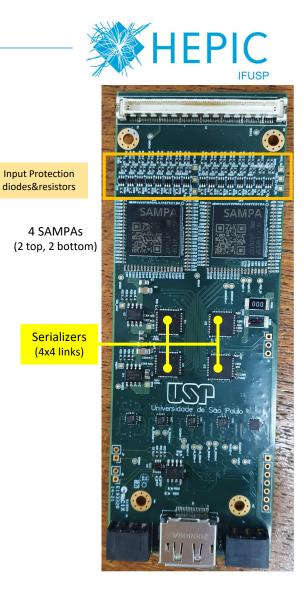
- Goal: Explore the radiation hardness of detectors (GEMs and LGADs)
- **Challenge:** Implementation of a microbeam line at the LAMFI facility (collaboration with CNPEM engineering team)

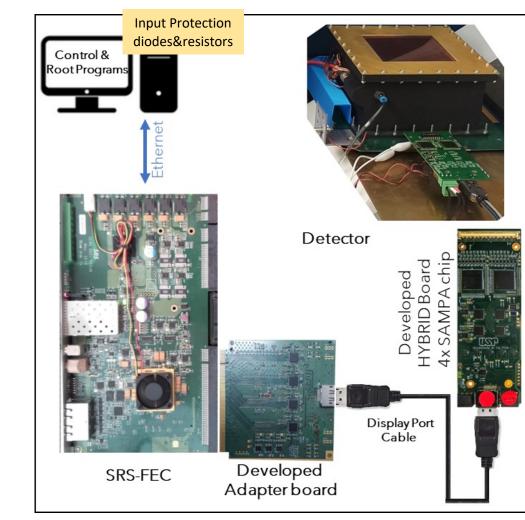
- Motivation: High induced charge by protons well localized in space. Proton beam line with energy between 800 keV and 3.4 MeV (from 12 μ m up to 120 μ m in silicon)
- Who: Tiago + LAMFI team


How to read our detectors

READOUT ELECTRONICS

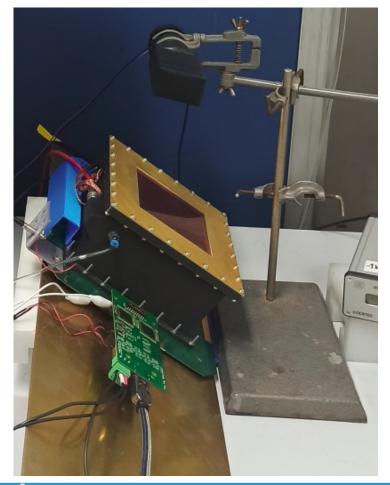
An ASIC is not (yet) a Readout Electronics

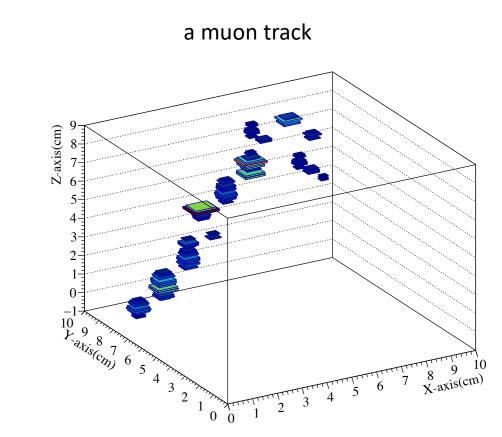

It's a nice ASIC! We are proud of! Nevertheless 'useless' on its own!


It needs to be host in a card that allows to plug its inputs to the detector, and the communication lines to an acquisition system (not mentioning providing power)

As shown, there are several activities in our lab, some of them will profit from, NEED!, a readout system with several tens of channels to add high position resolution to the detector

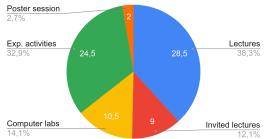
Integrating SAMPA into the RD51-SRS

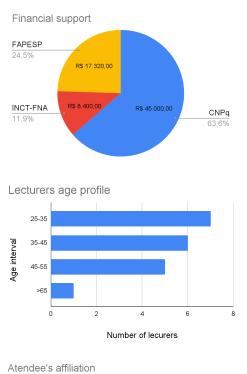




Integrating SAMPA into the RD51-SRS

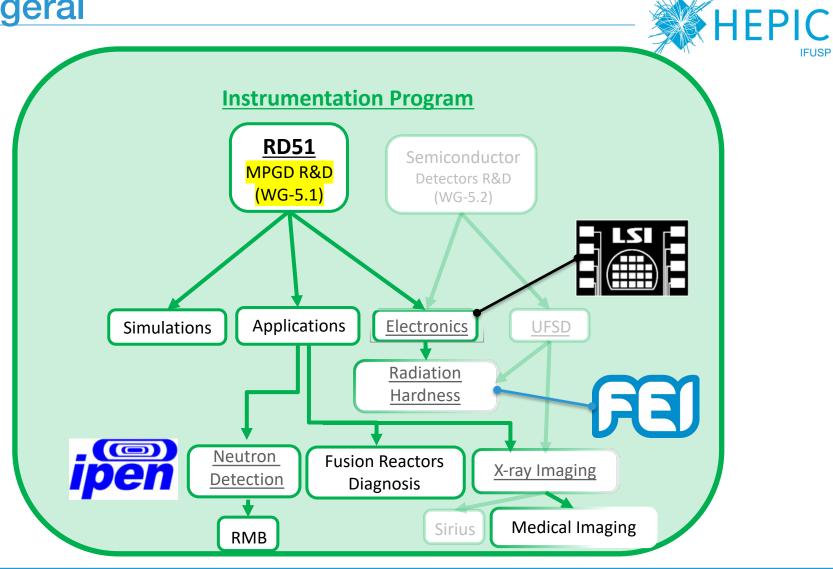
Tested in real life 😳 (colaboration with CVUT Prague)




Extensão

Workload - Total of 75 hours

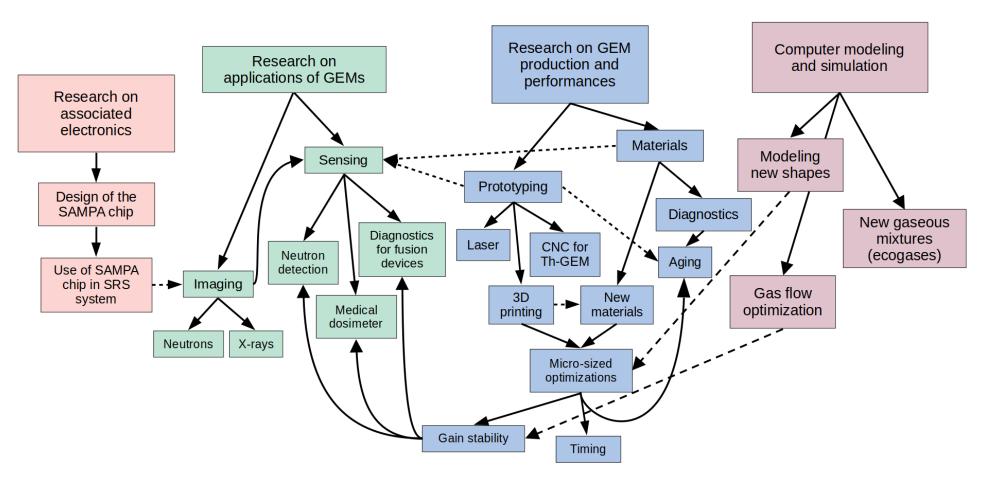
ଚ୍ଛ୍ IFUSP


Escola "André Jorge Swieca" de Física Nuclear Experimental da SBF

Curso com aulas teóricas e práticas:

- Fabricação
- Leitura de sinal e formação de imagens
- Simulações computacionais
- Aplicações
- Desgaste e degradação

HEPIC



IFUSP

Actividades

Linhas principais das atividades

- Simulações
 - Otimização do ponto de trabalho (geometria/tensões)
 - Novas configurações
 - Estudo do fluxo do gás no detector
- Electrónica (sistema de aquisição)
 - Otimizações (alta taxa, triggered/continuos readout, daisy chain)
 - Software de aquisição
- Fabricação de GEM/ThickGEM (e avaliação de desempenho/qualidades)
 - Produção local (Laser / Microfabricação)
 - Impressão 3D
- Estudos de envelhecimento e degradação
 - Envelhecimento controlado
 - Investigação e comparação de diferentes técnicas de analise
- Aplicações (desenvolvimento de detectores completos)
 - Imagem de raios-x com resolução em energia.
 - Detectores sensíveis à posição para nêutrons térmicos.
 - Detectores para fins didáticos (um dos objetivos/alvos: curso de Física Medica)

...

Considerações Finais

Dinâmica do WG-5.1

- Plataforma Teams
 - Convites serão enviados a todos
 - Estrutura será apresentada na primeira reunião do WG-5.1
- Reuniões regulares, dia/horário da reunião a ser combinado.
 Proposta: cadência das reuniões em dois níveis
 - Cada dois semanas
 - Atualização das atividades em progresso, e.g.:
 - Simulações
 - Arranjos experimentais (projetos e pedidos nas oficinas, compras, etc)
 - Desenvolvimento de ferramenta de análise
 - Resultados experimentais
 - Mensalmente: "plenárias"
 - "Tour de table" de todas as linhas, com plano para o mês(es) seguinte(s)
 - (+ os itens acima)