
# EuroHPC

Andrej Filipcic Jozef Stefan Institute, Ljubljana, SI



### EuroHPC Joint Undertaking

- Phase-I : 2018-2021
  - 3 pre-exascale (250-350 PFlops)
  - 5 peta-scale (5-20 PFlops)
- Phase-II: 2021-2027, currently approved:
  - High-range: 1 exa, Jupiter@Julich
  - Mid-range: 4 HPCs
  - $\circ$   $\,$   $\,$  More coming in the next few years  $\,$
- Quantum Computers:
  - Collocated to some HPCs
  - Likely 3 approved next month, 3 different technologies



#### Mission

- develop, deploy, extend and maintain in the EU a world-leading federated, secure and hyper-connected supercomputing, quantum computing, service and data infrastructure ecosystem;
- support the development and uptake of demand-oriented and user-driven innovative and competitive supercomputing system based on a supply chain that will ensure components, technologies and knowledge limiting the risk of disruptions and the development of a wide range of applications optimised for these systems;
- widen the use of that supercomputing infrastructure to a large number of public and private users and support the development of key HPC skills for European science and industry

#### Budget

- 50% European Commission, 50% hosting states (65% for peta/mid-range)
- Phase-I: ~1B€
- Phase-II: ~7B€
  - 200M€ for hyperconnectivity
  - $\circ$  1/2 for infrastructure

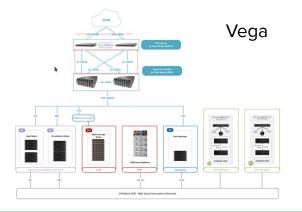


#### Projects and activities

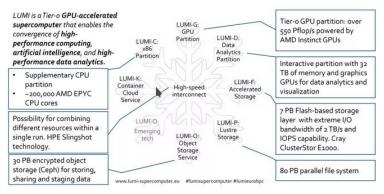
- EuroCC, EuroCC2 competence centers:
  - In each member state, coordinated by Castiel project, budget <sup>~</sup>1M€/country/year
  - Goals:
    - Develop and display a comprehensive and transparent map of HPC competences and institutions in their country
    - Act as a gateway for industry and academia to providers with suitable expertise or relevant projects, may that be national or international
    - Collect HPC training offers in their country and display them on a central place together with international training offers collected by other NCCs
    - Foster the industrial uptake of HPC
- Centers of Excellence:
  - Support sw development, scalability etc... ~10, 6-8M€/project
- RIAG (research and innovation), INFRAG (infrastructure) advisory groups
  - Recommendations for evolution and development
- EPI European processor initiative
- EUMaster4HPC common university program ... many other projects... (~30 ongoing)






#### **Resource allocations**

- Access for EU entitled users
- EC resource share PRACE-like calls for applications
  - development & benchmarking (immediate)
  - regular (peer reviewed)
  - Industry & public sector
- Hosting entity share:
  - Depends on the country policies and decisions
  - Eg WLCG pledges


## Design

- Some HPCs are "classical", but not all
- Vega (SI):
  - Scaled up for extreme networking, including WAN (200Gb/s atm)
  - Data processing (440GB/s actual input file reading for ATLAS), ceph, lustre...
  - Outbound connectivity (ipv4 works, ipv6 not supported by IB-ETH GW)
- LUMI (FI):
  - Dedicated partition for virtualization and services
  - Ceph Object Storage
- MareNostrum5:
  - Not clear yet, but they will support LHC (government agreement) with pledges

- Most are general purpose machines
- CPU (AMD, Intel, ARM)+ GPU (NVidia, AMD) partitions
  - Most nodes have GPUs (60-80% on large machines)
- Storage: Lustre, Ceph, some GPFS throughputs from 200-2000 GB/s
- Future: ARM (near) + RISC-V (medium)
- Plans for Tbps interconnects, calls next year



Architecture







## V E G A

## After 1.5 years of operation

- ~500 users per HPC
- Many different kinds of workloads:
  - Many-node compute (cpu, gpu), mostly chemistry, material science
  - Small node/core parameter scans independent jobs
  - Machine learning rising rapidly (tensorflow)
  - Extreme data processing (not only LHC), eg Cryomicroscopy
- Some HPCs allocate full nodes only
- Many (non-LHC) users are unhappy with "default" data copy over ssh something more organized needed
- Many users require containers or even virtualization

#### Impact

- Much more users than in PRACE, a lot of newcomers due to simplicity of access
- Usage for industry is rising, mostly small or medium enterprises
- Several countries decided to provide resources through (Euro)HPCs to LHC (Slovenia, Spain, Germany...)
- Network connectivity to Geant will likely be boosted in the next 2 years
- Long term data storage is not part of the plans yet needs cooperation with EOSC, EGI and WLCG...
- Some leadership EU project, eg DestinationEarth resource pledges approved for production by EuroHPC JU
  - More to follow, (LHC?)



#### Sites: ~7k CPU nodes, ~800k cores

#### • Vega:

- 960 CPU nodes, 128-core AMD Rome
- 60 GPU nodes, 128-core AMD Rome + 4x A100
- LUMI:
  - **1536** CPU nodes, 128-core AMD Treno
  - ~4000 GPU nodes, 64-core AMD Trento, 4x AMD MI250X
- Leonardo:
  - **1536** CPU nodes, 52-core Intel Sapphire Rapids
  - 3456 GPU nodes, 32-core Intel Ice Lake, 4x A100-64
- Deucalion:
  - 1632 Fujitsu PRIMEHPC FX700
  - 400 CPU nodes, 128-core AMD Rome
  - 33 GPU nodes, 128-core AMD Rome + 4x A100

- Discoverer:
  - **1128** CPU nodes, 128-core AMD Rome
- Karolina:
  - **720** CPU nodes, 128-core AMD Rome
  - 72 GPU nodes, 128-core AMD Rome, 8x A100
- MeluXina
  - **573** CPU nodes, 128-core AMD Rome
  - 200 GPU nodes, 128-core AMD, 4x
    A100
- Mare Nostrum 5: no details yet (procurement)

#### EuroHPC Roadmap

|                           | 2019 & 2020                                              | 2021                                                       | 2022 | 2023                                                     | 2024 | 2025                                                         | 2026 | 2027 |
|---------------------------|----------------------------------------------------------|------------------------------------------------------------|------|----------------------------------------------------------|------|--------------------------------------------------------------|------|------|
| HPC<br>Infrastructure     | 3 pre-exascale<br>and 5 petascale<br>HPC systems         | Several pre-exascale systems<br>and 2 exascale HPC systems |      |                                                          |      | One or more<br>exascale and post-<br>exascale HPC<br>systems |      |      |
| Quantum<br>Infrastructure | Quantum<br>simulators<br>interfacing with<br>HPC systems | First<br>generation of<br>quantum<br>computers             |      | Quantum<br>simulators<br>interfacing with<br>HPC systems |      | Second generation of quantum computers                       |      |      |



#### Details on EuroHPC Supercomputers

• <u>https://eurohpc-ju.europa.eu/about/our-supercomputers\_en</u>

