
Distributed training and
hypertuning of deep-learning
based algorithms using HPC in

CoE RAISE
Workshop for the USATLAS-USCMS HPC/Cloud Blueprint

27th of September 2022

Eric Wulff

CERN

Hyperparameter Optimization

➢ Sometimes referred to as Hyperparameter Tuning or Hypertuning

➢ Hyperparameters stay constant during the learning process
➢ Defines the model architecture (e.g., #layers, #nodes per layer, etc.)

➢ Defines the optimization algorithm (e.g., learning rate, batch size, k in KNN, etc.)

➢ Hypertuning complex models and/or large datasets is compute-resource
intensive

➢ Benefits greatly from HPC resources

➢ In need of smart, efficient search algorithms

2

Task 4.1 – Large-Scale Distributed Hyperparameter Optimization

3

➢ Scalable up to hundreds of GPUs

➢ Mean validation loss decreased
by ~44% giving a significant
performance improvement

Distributed hypertuning

Assess learning
variability Better learning

M
o

d
el

se

le
ct

io
n

[1] E. Wulff, M. Girone, J. Pata https://arxiv.org/abs/2203.01112

[1][1]

https://arxiv.org/abs/2203.01112

Scaling of MLPF hypertuning on multiple compute nodes

4[1] https://doi.org/10.5281/zenodo.4452282

➢ Scaling of a hypertuning run of MLPF on the JURECA-DC-GPU system at the Jülich
Supercomputer Centre (JSC), 4 NVIDIA A100 and 2× 64 cores AMD EPYC 7742 per node

➢ Better than linear due to excessive re-loading of models when using fewer nodes

Data used: Simulated particle-level events of ttbar and QCD with PU200 using Pythia8+Delphes3 for machine learned particle flow (MLPF) [1]

https://doi.org/10.5281/zenodo.4452282

drive. enable. innovate.

The CoE RAISE project has received funding from
the European Union’s Horizon 2020 –
Research and Innovation Framework Programme
H2020-INFRAEDI-2019-1 under grant agreement no. 951733

Follow us:

https://medium.com/@raise_info
https://www.researchgate.net/project/CoE-RAISE
https://www.youtube.com/channel/UCAdIZ-v6cWwGdapwYxdN7dg
https://www.facebook.com/CoERAISE2021
https://www.linkedin.com/company/coe-raise
https://twitter.com/CoeRaise

Backup

Using Ray Tune on SLURM clusters

7[1] https://github.com/erwulff/particleflow/blob/master/mlpf/juwels/raytune.sh [2] https://github.com/NERSC/slurm-ray-cluster

#!/bin/sh

#SBATCH ...
#SBATCH ...

Get the node names
nodes=$(scontrol show hostnames $SLURM_JOB_NODELIST)
nodes_array=($nodes)

Get the head node
node_1=${nodes_array[0]}
ip=$(srun --nodes=1 --ntasks=1 -w $node_1 host ${node_1}i | awk '{ print $4 }') port=6379
ip_head=$ip:$port
export ip_head
echo "IP Head: $ip_head"

echo "STARTING HEAD at $node_1"
srun --nodes=1 --ntasks=1 -w $node_1 mlpf/raytune/start-head.sh $ip &
sleep 30

worker_num=$(($SLURM_JOB_NUM_NODES - 1)) #number of nodes other than the head node
for ((i=1; i<=$worker_num; i++))
do
node_i=${nodes_array[$i]}
echo "STARTING WORKER $i at $node_i"
srun --nodes=1 --ntasks=1 -w ${node_i} mlpf/raytune/start-worker.sh $ip_head &
sleep 5

done

Run the Ray Tune script
python3 tune_script.py --cpus "${SLURM_CPUS_PER_TASK}" --gpus "${SLURM_GPUS_PER_TASK}"
exit

➢ Can be unintuitive when first setting up

➢ Ray expects a head-worker architecture
with a single point of entry

➢ We must start a head node and multiple worker
nodes before running the Ray Tune training
script on the head node

➢ Once properly set-up, works great

Code available at [1]. Cluster launcher adapted from [2].

https://github.com/erwulff/particleflow/blob/master/mlpf/juwels/raytune.sh
https://github.com/NERSC/slurm-ray-cluster

Improvements from hypertuning

8

➢ Loss curves before (left) and after (right) hypertuning

➢ Only the physical datasets, no single particle gun samples

➢ Mean and standard deviation of 10 trainings with identical hyperparameters

➢ Mean validation loss decreased by ~44%

[1] E. Wulff, M. Girone, J. Pata https://arxiv.org/abs/2203.01112

[1][1]

https://arxiv.org/abs/2203.01112

Task 4.1 – Machine-Learned Particle Flow

9
[1] Pata, J., Duarte, J., Mokhtar, F., Wulff, E., Yoo, J., Vlimant, J.-R., … Girone, M. (2022). Machine

Learning for Particle Flow Reconstruction at CMS. Retrieved from http://arxiv.org/abs/2203.00330

CMS Collision event MLPF event reconstruction [1]

Physics simulation Dataset creation GNN training Trained model

Model export
Data pre-

processingData selection

Event
reconstruction

http://arxiv.org/abs/2203.00330

Comparison of hypertuning algorithms in Ray Tune

10

➢ Using MLPF on a subset of the training data

➢ Using 4 compute nodes with 4 GPUs per node

➢ NVIDIA A100 SXM4 40GB

➢ 64 core Intel Xeon Platinum 8358 CPU @ 2.60GHz

➢ Both Hyperband and ASHA much more efficient than
random search

➢ ASHA beats Hyperband in efficiency due to its asynchronous
nature

➢ ASHA + BO gives best performance per spent core-hour

[1] E. Wulff, M. Girone, J. Pata https://arxiv.org/abs/2203.01112

[1][1]

https://arxiv.org/abs/2203.01112

