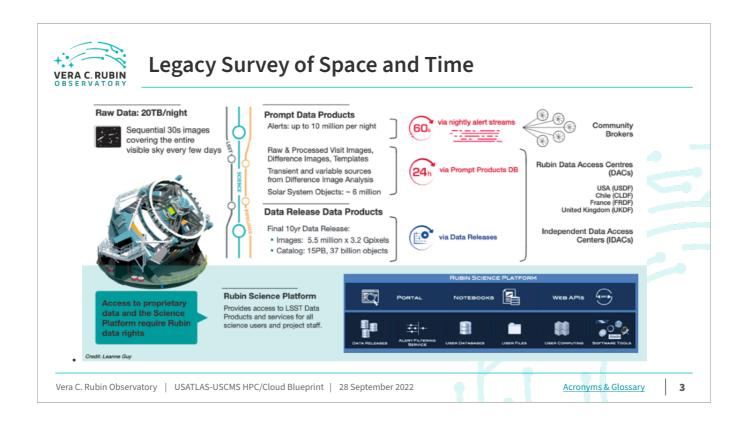
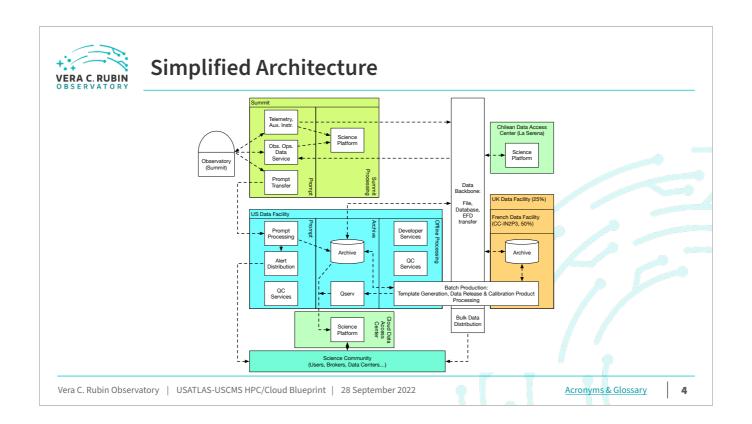


Rubin Observatory Cloud Experience

Kian-Tat Lim, DM Software Architect



Most Clouds Are Bad for Astronomers


Vera C. Rubin Observatory | USATLAS-USCMS HPC/Cloud Blueprint | 28 September 2022

Acronyms & Glossary

Rubin data processing has three major use cases

- Alert Production processes images from the telescope within 60 seconds
- Data Release Production reprocesses all images taken to date each year
- Science users on the Rubin Science Platform do analysis and reprocessing Also developers need to do both ad hoc and production-style processing

View of the Data Management system with telescope as an input device Far left: near-realtime Prompt Processing Right: High Throughput Computing across multiple sites Bottom and upper right: Dedicated resources for science user access and analysis

Proof-of-Concept Engagements

- Three engagements with two providers
- DMTN-078/DMTN-125
 - Leveraged to get cloud-native experience and improve deployment models
 - Learned about potential bottlenecks in high bandwidth-delay product networks
 - Learned about interacting with vendors
- <u>DMTN-114/DMTN-137</u>
 - o Tested workflow execution middleware at modest scale (up to 1200 vCPU)
 - Made use of "spot" or preemptible instances
- DMTN-150/DMTN-157
 - Tested improved workflow execution middleware at similar scale (up to 1600 vCPU)
 - o Learned about desirability of HTTP/2 persistent connections for long-haul network

Vera C. Rubin Observatory | USATLAS-USCMS HPC/Cloud Blueprint | 28 September 2022

Acronyms & Glossary

Working with Vendors

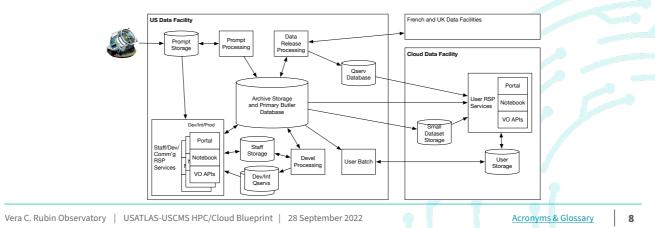
- Low bureaucracy, high flexibility, willingness to assist are highly desirable
- Deep engagement with the vendor's engineering teams helps a lot
- Consultants can be very useful; unlike vendor engineers, they can often work independently on customer code to resolve problems

Vera C. Rubin Observatory | USATLAS-USCMS HPC/Cloud Blueprint | 28 September 2022

Acronyms & Glossary

Cost Modeling

- Complex spreadsheets <u>from us outlining needs</u> and from vendor matching to technologies and prices
- Compute costs (4.1E8 core-hours in year 10) are reasonable
- Storage costs for frequently-accessed data (100s of PB of both in-process and released results) are large
 - o Paying for more durability and performance than needed
- Egress costs can be a problem as well, but mitigations exist
 - Keep most data inbound to the cloud or inside the cloud
 - o Only have summarized data or visualizations exit
 - o Credits based on total spend
 - o Can consider dedicated interconnect to get discounts


Vera C. Rubin Observatory | USATLAS-USCMS HPC/Cloud Blueprint | 28 September 2022

Acronyms & Glossary

Decision: Hybrid Model

- Most storage and large-scale compute is on-prem
 - o While cloud compute is not expensive, moving the data is not advisable
- Users are supported in the cloud

Rubin Science Platform

- Users doing science on large datasets using web-based applications:
 - o Portal (access and visualization)
 - o Notebooks (analysis)
 - o APIs (remote access and processing)

Uses of Cloud Services (1)

- Rubin Science Platform
 - Security (separately managed identities, limited interfaces with on-prem facilities)
 - © Elasticity (especially immediately after an annual Data Release)
 - Bring-your-own (combining project resources with externally-granted resources)
 - Technology (GPU/TPU, easy production-quality deployments of sophisticated infrastructure services)
- Compute
 - o Executed DP0.2, demonstrated scaling to larger numbers of nodes (4000 vCPU)
 - o Not expected to execute main survey Data Release Production
 - Cost of storing or egressing large data products is excessive
 - O User batch could be done in the cloud, but it could have the same drawbacks as DRP
 - o But it would have the advantages of the RSP as well

Vera C. Rubin Observatory | USATLAS-USCMS HPC/Cloud Blueprint | 28 September 2022

Acronyms & Glossary

Uses of Cloud Services (2)

- Development testing
 - Elasticity
 - Technology
 - Rapid prototyping with advanced services (serverless)
- Possible future for large-scale database
 - Custom database still has advantages
 - o Spherical geometry is becoming less of a differentiator
 - o Shared scan is still a win, but with NVMe IOPS, also less
 - o Special/spatial indexes
 - o Storage costs could still be an issue
- Archival (tape-replacement) storage
 - o TCO if not retrieved may be comparable

Vera C. Rubin Observatory | USATLAS-USCMS HPC/Cloud Blueprint | 28 September 2022

Acronyms & Glossary

Cloud Reliability

- Kubernetes upgrades roll through semi-arbitrarily (some scheduling controls)
 - o Should design services to deal with rolling outages
- Durability of storage is extremely high (maybe more than necessary)
- Service outages are rare and usually short, compared with on-prem
- 24x7 support for basic infrastructure and even for higher-level services may be better than on-prem

Vera C. Rubin Observatory | USATLAS-USCMS HPC/Cloud Blueprint | 28 September 2022

Acronyms & Glossary

Conclusions, Status, Plans

- Hybrid model is suitable for Rubin use cases
- Practicing today with Interim Data Facility on Google Cloud Platform hosting simulated data
- Building out back-end on-prem infrastructure to practice integration and tune caching parameters
- Continuing to track developments in Cloud services and pricing

Vera C. Rubin Observatory | USATLAS-USCMS HPC/Cloud Blueprint | 28 September 2022

Acronyms & Glossary