
Seed Finding as a Spatial Search Problem

Using k-d trees to accelerate seed finding for high pile-up

Stephen Nicholas Swatman

Monday, September 26, 2022

1

A denotational view of seeding

Seeding is a function f : rR3s Ñ rpR3q3s which takes a list of points, and returns a list

of triplets of those points.

f pSq “ tpb,m, tq P S3 | ppb,mq, ppm, tq, qpb,m, tqu (1)

Operationally, this corresponds to a triple loop, Θp|S |3q.

2

A denotational view of seeding

Alternatively, focus on the middle point to match the operational semantics of the

current ACTS approach:

f pSq “
ď

mPS

tpb,m, tq | b, t P S , ppb,mq, ppm, tq, qpb,m, tqu (2)

3

A denotational view of seeding

In orthodox seeding, bin spacepoints s.t. if a and b are in adjacent bins, then ppa, bq

and ppb, aq. However:

• Binning is pessimistic

• Binning is static

• Binning is irregular

In this talk: an alternative seeding approach based on range search.

4

A denotational view of seeding

Instead of considering all combinations of points, we can some oracle volumes that

contain all valid candidates:

f pSq “
ď

mPS

tpb,m, tq | b, t P S , b P V Ó
m, t P V Ò

m, qpb,m, tqu (3)

Does this really help us? Determining whether a point lies in an arbitrary volume is no

easier than determining whether a set of predicates is true!

5

The hierachy of volumes

Source: Mei, Gang. 2014 “RealModel: A System for Modeling and Visualizing Sedimentary Rocks.”

6

Spatial search problems

A very simply defined volumes is the axis-aligned (orthogonal) hyperrectangle! Can be

defined in Rn as:

V “

n
ą

i“1

rvmin
n , vmax

n s (4)

With extremely simple membership checking:

p⃗ P V ðñ

n
ľ

i“1

πnpp⃗q P rvmin
n , vmax

n s (5)

7

Predicate conversion

Solution will need to be to derive an axis-aligned superset of V analytically. Consider

that the duplet predicate ppx⃗ , y⃗q is actually a conjunction of several smaller predicates:

ppx⃗ , y⃗q “ yr ď xr ` ∆rmax

^ zmin ď interceptzpÐÑxy qz ď zmax

^ ηmin ď ηpÐÑxy q ď ηmax

^ yϕ ď xϕ ` ∆ϕmax

(6)

8

Predicate conversion

If we can convert each of these predicates to one or more predicates of the form:

pi px⃗ , y⃗q ñ
`

p1
i px⃗ , y⃗q “ gminpxq ď πi pyq ď gmaxpxq

˘

(7)

Then this trivially defines an axis-aligned bounding box...

gminpxq ď πi pyq ď gmaxpxq ðñ πi pyq P rgminpxq, gmaxpxqs (8)

9

Predicate conversion

Predicates are ideally equivalent, but weakened predicates are also acceptable! Just

need to filter the spacepoints after with the corresponding equivalent predicate.

If we can find an equivalent predicate p1 to our predicate p:

@x : ppxq ðñ p1pxq (9)

But if p1 is a weaker version of p:

@x : ppxq ùñ p1pxq (10)

10

r limits

First predicate is practically in orthogonal form already:

p1px⃗ , y⃗q “ yr ď xr ` ∆rmax ðñ xr ď yr ď xr ` ∆rmax (11)

Thus we can conclude:

gminpx⃗q “ xr

gmaxpx⃗q “ xr ` ∆rmax

i “ r

(12)

11

Approximating the z-intercept

´12 ´10 ´8 ´6 ´4 ´2 2 4 6 8 10

2

4

6

8

10

12

14

16

18

0

zmin zmax

X

AB C

E F

12

Approximating the z-intercept

This gives the following weakened version of predicate p2:

p1
2px⃗ , y⃗q “ zmax ´

rmaxpzmax ´ x⃗zq

x⃗r
ď y⃗z ď zmin `

rmaxpx⃗z ´ zminq

x⃗r
(13)

Thus:

gminpx⃗q “ zmax ´
rmaxpzmax ´ xzq

xr

gmaxpx⃗q “ zmin `
rmaxpxz ´ zminq

xr

i “ z

(14)

13

Dependencies between predicates

If you look closely, the previous predicate relies on some rmax value: if one predicate

constricts the r range, then it will by proxy constrict the z range!

Remaining predicates are outside of the scope of this talk... But good approximations

found!

14

Dynamic cuts

So far, we have seen static cuts, which use very little information about the bound

spacepoints, but this doesn’t need to be the case:

∆rmaxpx⃗q “

$

’

’

&

’

’

%

40, if xr ď 60

70, if 60 ă xr ď 220

100, otherwise

(15)

This sort of dynamic search is hard to model in orthodox seeding, but trivial to model

in orthogonal seeding.

15

k-d trees

Use k-d trees from the field of computer graphics: k-dimensional generalisation of a

binary search tree.

Each inner node picks an arbitrary dimension and splits it as evenly as possible, then

recurse.

16

k-d trees

Source: Wikipedia (CC BY-SA 3.0)

17

k-d trees

Constructing a k-d tree is an Opn log nq operation.

Performing a range search has worst case complexity Opn1´ 1
k ` nq, for k “ 3 that

means Opn
2
3 ` nq.

Average time to perform a range search is closer to Oplog nq.

18

k-d trees

Added an implementation of a generalized k-d tree to ACTS, with a few design

considerations:

• Dynamic median finding: Use exact median for small data sets, approximate a

median for larger data sets.

• Higher order functional interface: Use higher order functions to perform

operations on the tree, allowing us to remove the overhead of constructing output

vectors, and write cleaner code.

Very naive simplified GPU implementation in traccc.

19

Thinking of co-processors

k-d trees are GPU-friendly, and naive

implementation of this seeding exists in

traccc.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

20 40 60 80 100 140 200 300
S
ee
d
in
g
ti
m
e
(s
)

xµy

Alternative CUDA seeding (NVIDIA A100)
Existing CUDA seeding (NVIDIA A100)
Existing CPU seeding (AMD EPYC 7402, 1 core)
Existing CPU seeding (AMD EPYC 7402, est. 24 cores)

20

Conclusions and future work

Seed finding can be reduced to a spatial search problem. Provides alternative to

orthodox seeding with some benefits:

• Dynamic search ranges based on e.g. detector region

• Regular GPU-friendly structure

• More accurate search spaces

Currently implemented in main-line Acts (CPU) and traccc (GPU).

Questions or comments outside this session: stephen.nicholas.swatman@cern.ch!

21

mailto:stephen.nicholas.swatman@cern.ch

	Introduction

