

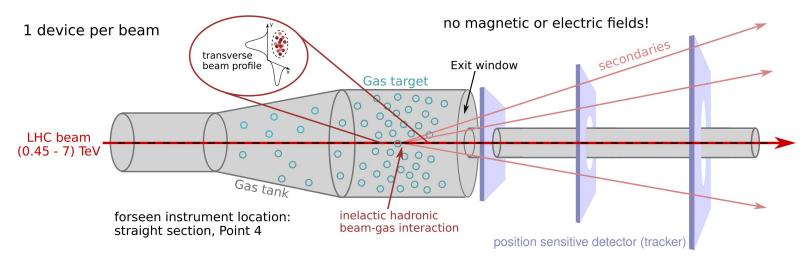
ACTS for the Beam Gas Vertex (BGV) Monitor for Hilumi LHC

B. Kolbinger on behalf of the BGV team (CERN Beam Instrumentation Group)

<u>Acknowledgements</u>: <u>BGV team</u>: H. Guerin, J. Storey <u>With input from</u>: **X. Ai**, **C. Allaire**, G. Breggliozzi, D. Hynds, R. Kersevan, R. De Maria, J. Oliveira, R. Plackett, D. Prelipcean, T. Ramos Garcia, B. Salvant, **B. Schlag**, G. Schneider, T. Lefevre, B. Salvant, **A. Salzburger**, H. Sandberg, R. Veness

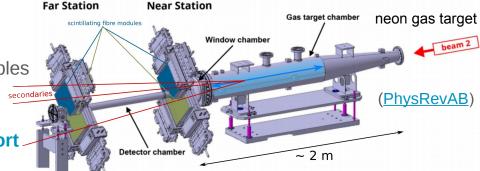
B. Kolbinger, Beam Gas Vertex Monitor, ACTS Workshop, 26th of September 2022

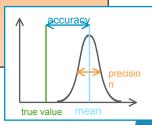
Outline


Introduction

- Simulations Performance study & optimisation
 - ACTS for the BGV
 - Results of performance study with a generic BGV setup
- New BGV design
- Summary & conclusions

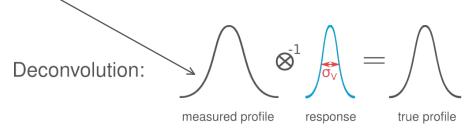
Introduction - principle


- Noninvasive transverse beam profile monitor based on the reconstruction of vertices of inelastic hadronic beam-gas interactions - BGV (Beam Gas Vertex) monitor.
- Part of Hilumi LHC upgrade.
- Provide continuous emittance and transverse beam profile measurement throughout the LHC accelerator cycle (450 GeV to 7 TeV).


Status of the BGV

- BGV demonstrator device was installed, commissioned and operated during Run 2 - troubles reconstructing vertices, no beam profile measurement possible.
- Work on new design Conceptual design report will be reviewed in October 2022.

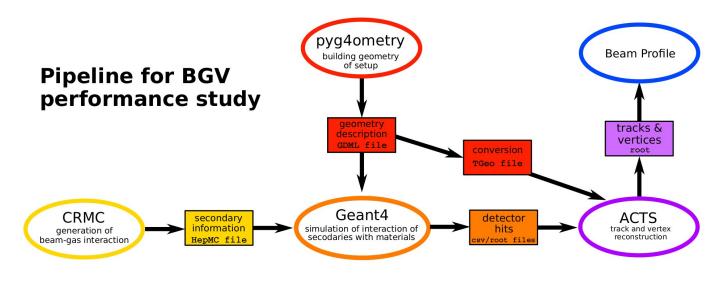
Requirements for the future HL-LHC transverse beam profile monitor:


- Emittance measurement with **accuracy** \leq **10 %** (beam size \leq 5%).
- Measurements of beam size of individual bunches, with ~ 1 % precision after ~1 min of accumulating data.
- Provide transverse profile measurements.

BGV performance - what's important?

 Method: deduce true beam profile from spatial distribution of reconstructed vertices.

the better we know the response function, the better we know the profile!


- Key performance measure = response function. Not easy to determine with high precision keep its width (= vertex resolution σ_v) small!
- What σ_v do we need, to achieve a measurement of beam size with accuracy of ≤ 5 %?
 - Depends on beam size and how well we know the vertex resolution!
 - Minimum transverse beam size at BGV locations is 235 µm (7 TeV). Assume knowledge of σ_v with 10 % accuracy \Rightarrow need $\sigma_v \leq$ 166 µm (see <u>calculation</u>).

Performance study & optimisation for new BGV design

- Guide choices of detector and gas target technology.
- What are the requirements for BGV gas target and tracker, to:
 - fulfilling performance specifications,
 - within the boundary conditions of: feasibility of integrating it into the LHC?

answer with simulation+reco study!

BGV - tracks, vertices & secondary properties

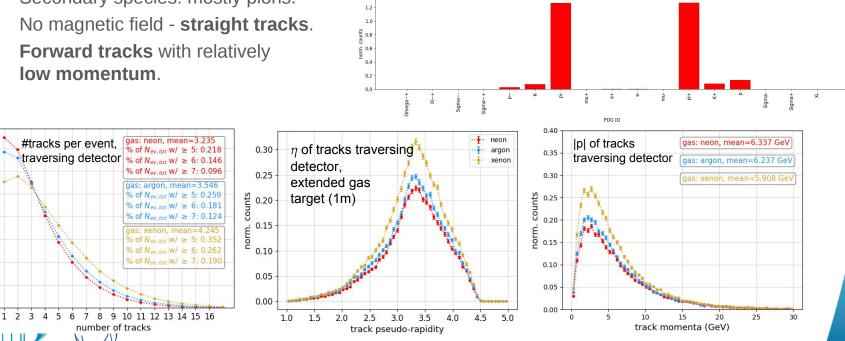
- Infer beam profile from primary vertices of beam-gas interactions.
 - Interaction rate is ~600 kHz (total, ~200 Hz per bunch).
 - Recording single collisions, pile-up very unlikely (one collision every $2 \mu s$).
- Secondary species: mostly pions.
- No magnetic field straight tracks. ٠
- Forward tracks with relatively low momentum.

number of tracks

#tracks per event.

0.175

0.150


st 0.125 0.100

0.075

0.050

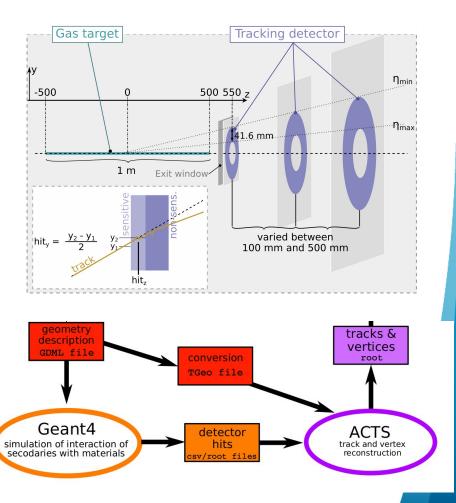
0.025

0.000

B. Kolbinger, Beam Gas Vertex Monitor, ACTS Workshop, 26th of September 2022

neon secondaries traversing all laver

ACTS setup for the BGV


Initial ACTS setup:

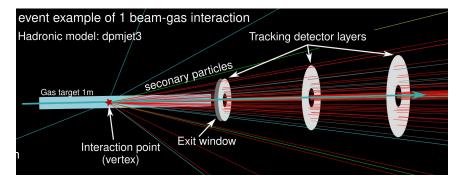
- Using the framework of ACTS examples.
- Very basic geometry.
- Material mapping using TGeo and GDML files from Geant4.
- Read-in event data from BGV Geant4 simulations via the csv reader (hits and initial particles).
- Gaussian hit smearing.
- Reconstruction based on ACTS truth tracking examples
- with Kalman track fitting & Billoir vertex fitting.
- Momentum input truth momentum.

Add more details & realism step-by-step:

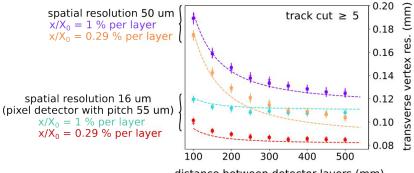
- Initial parameters for track fit:
 - First and last detector hit of tracks.
- Implement geometry specific technology/design (on-going).
- Momentum estimation for initial conditions and Kalman fitter (on-going).
- Digitisation, clustering, track finding, alignment...

Performance study - overview

• Initially: generic BGV.


 Goal: efficiently identify impact of design parameters and provide first estimates of promising setup's dimensions etc.

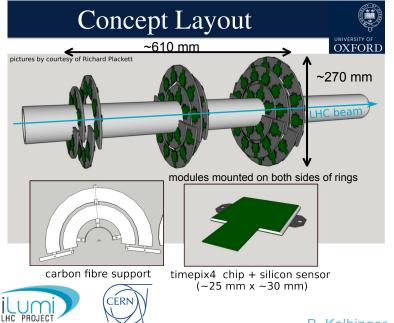
Test important **design parameters and their impact on performance**:


- Detector dimensions, material budget, position resolution etc.
- Gas target extension, pressure, gas species etc.

Conclusions

- Results point towards possibility of compact tracker with a high spatial resolution.
- Extended gas target not a show stopper -~1 m neon, with ~10⁻⁷ mbar.

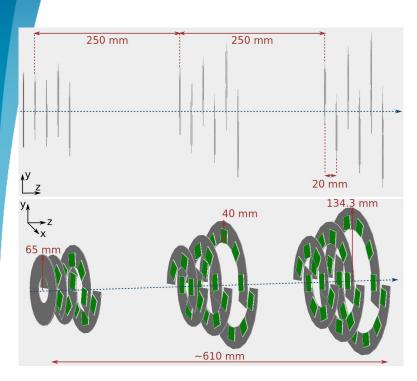
vertex resolution vs distance between detector layers:

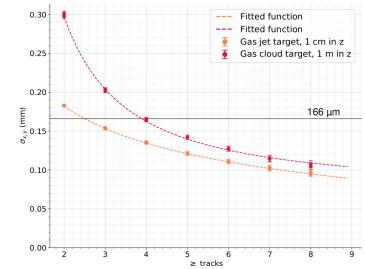

distance between detector layers (mm)



A BGV tracker based on silicon hybrid pixel detectors

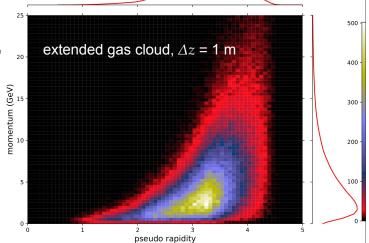
Collaboration with Oxford University: D. Hynds and R. Plackett

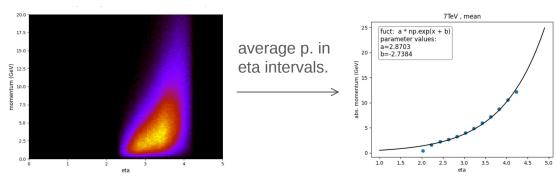

- Design based on the ATLAS ITk HiLumi upgrade.
- **Timepix technology**: well known, robust and widely used detectors. **XP within Beam Instrumentation** group.



- Project planning on-going:
 - Module design & building, support structure @Oxford.
 - Read-out, reconstruction software, commissioning @CERN.
- Installation could be foreseen in 2028.

Vertex resolution results with new geometry


- **Simulation geometry update**: dimensions from generic BGV study & based on conceptual design.
- Two types of gas targets extension in z:
 - 1 cm (gas jet-like target) and 1 m.
 - Constraint for vertex fit for $\Delta z = 1$ cm case.
- Using truth momentum.


B. Kolbinger, Beam Gas Vertex Monitor, ACTS Workshop, 26th of September 2022

Momentum estimation for Kalman fitter (on-going)

- Straight tracks rely on estimation from simulations.
 - Constant momentum (average from simulations ~6 GeV),
 - Or exploit: correlation of p and pseudo-rapidity.
- How:
 - For testing: @PointwiseMaterialInteractor, add momentum estimation instead of truth momentum.

first tests with point source.

B. Kolbinger, Beam Gas Vertex Monitor, ACTS Workshop, 26th of September 2022

듭 50000

40000

30000

20000

10000

pull of loc0

+ prediction

+ filtering

- smooth

5

pull

-160000

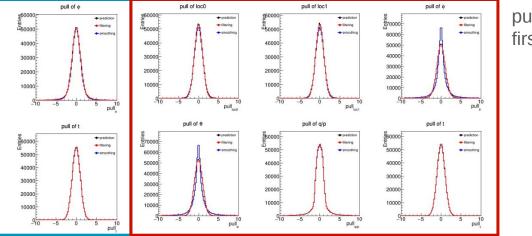
50000

40000

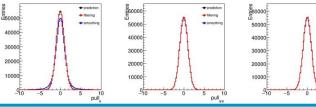
30000

20000

10000


-5

-0.01 0 0.01


pull of 0

with momentum estimation

pull distributions at first measuring plane.

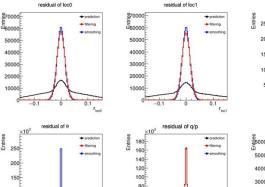
-5

pull of a/p

5

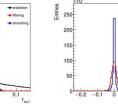
pull

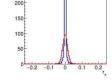
with truth momentum


\$70000

50000

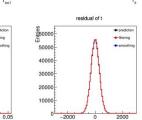
40000

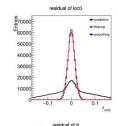

30000

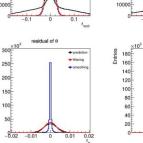

20000

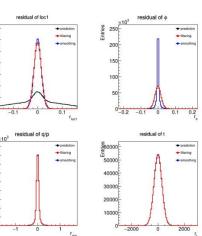
60

-0.05




residual of ø


+ predictio


+ filtering

+ smoothin

residual distributions at first measuring plane.

th of September 2022

Summary & outlook

• The BGV is a transverse beam profile monitor based on inelastic hadronic collisions, currently being **optimised for the HL-LHC**.

• **Design is based on performance study** using G4 simulations & reconstruction via ACTS.

• More work on track and vertex reconstruction necessary. Future steps/interests:

- Momentum estimation investigate issues with pull distributions.
- More **geometry details** use cone shape for gas target's exit window and add beam pipe.
- •Use ACTS for the future measurement, real time analysis? 53 kHz Event rate.
- •**Track finding**/pattern recognition small number of hits per track (CKF not suitable?), but low track multiplicity.
- •Alignment no experience in BI.
- Thanks very much to ACTS team for their support!

Thank you for your attention!

