Ali i o
ignment in aits,

Xiaocong Al

ACTS Developers Workshop, Sept 27, 2022

Alignment parameters

* Detector element placement description:

— Translation (3 parameters) + Rotation (3x3 rotation matrix), i.e. 12 parameters

* Alignment parameters:

— Translation + rotation about three axes using Euler angles, i.e. 6 parameters

- (Caveat: a rotation can be expressed in 24 equivalent sequence of Euler angles

enum AlignmentIndices : unsigned int {

}i

// Center of geometry object in global 3D cartesian coordinates
eAlignmentCenter® = 0Qu,

eAlignmentCenterl = eAlignmentCenter® + 1lu,

eAlignmentCenter2 eAlignmentCenter® + 2u,

// Rotation angle around global x/y/z axis of geometry object
eAlignmentRotation® = 3u,

eAlignmentRotationl = eAlignmentRotation® + 1u,

eAlignmentRotation2 = eAlignmentRotation® + 2u,

// Last uninitialized value contains the total number of components
eAlignmentSize,

Alignment context

* Acts:GeometryContext is passed to all geometry-dependent algorithms in
ACTS, ie.:

— algorithms can access the right version of geometry

= alignment algorithm can create or update a version of geometry

Acts::Result<void> updateAlignmentParameters|(
const Acts::GeometryContextd& gctx,
const std::vector<Acts::DetectorElementBase*=& alignedDetElements,
const AlignedTransformUpdater& alignedTransformUpdater,
AlignmentResult& alignResult,
Acts::LoggerWrapper Llogger = Acts::getDummylLogger()) const;

Track-based alignment

* |dea: tracks share the same detector geometry (a.k.a. global track parameters o)
though they have their own track parameters (a.k.a. local track parameters xj)

* The global track parameters can be estimated by minimizing the chi2 sum of a
set of tracks:

= Z)U Z[m? hi(@(d), @)V, — hi(z(a),)]

* Thisinvolves solvmg the non-linear equation iteratively, i.e. ais updated
iteratively to approach its optimal value:

dQXQ dXQ

75 |6 8Y= g e

Available ingredients

r = m—h(x,@) The track residual

|4 The measurement covariance

Sh(x) The projection matrix from (bound)
dx |y, track parametersto measurement

c Thecovariance of track parameters at different
measurements:

Straightforward with global chi2 fitter. But can be provided by
Kalman Filter as well (Calculated by

Acts::detail::globalTrackParametersCovariance)

or
Akf = —k

5¢, 1he derivative of residual w.r.t. alignment parameters
4

Calculated by Surface::alignmentToBoundDerivative

The first and second derivatives
for a single track is calculated in
Acts::detail::trackAlignmentState
ar’
da
d’x? Ty —1 Y oyl
S = 247V (V-HCH")V™'A.

= 24Ty"! (V » HCHT) vy,

d2,2 \ 4 dr2
dA.; Ao = — X
(04

da
p [e.4y]

Solved with Eigen LU decomposition

(claimed stable and well tested with
large matrices)

Derivatives w.r.t. alignment parameters

* Currently, the derivative of track residual is calculated w.r.t. the rotation of a
surface about fixed global x/y/z axis, i.e. Tait=Bryan angles, extrinsic rotation

= R =RAy)Ry(B)R«(0t) (rotation of o about global x > B about globaly > v about global z)

cosB 0 sing]||[1 0 0
0 1 0 0 cosa -—sina

—sinf 0 cosf

= |siny cosy O
| 0 0 1

[cosy —siny 0
0 sina cosa

[cos fcosy sinasinffcosy—cosasiny cosasinfcosy+ sinasiny

= | cosfsiny sinasin @siny + cosacosy cosasin Fsiny — sin « cos

| —sinf sin o cos 8 cos cxcos 3

* Will change to provide the derivatives w.r.t. rotation around local axes of surface

* Also provide derivatives w.r.t. the rotation of layers/volumes, as more coarse
alignment is often used

https://en.wikipedia.org/wiki/Euler_angles

A naive alignment algorithm

template <typename fitter t>
template <typename trajectory container t,
typename start parameters container t, typename fit options t=

Acts: :Result<ActsAlignment: :AlignmentResult>
ActsAlignment: :Alignment<fitter t>::align(

const trajectory container t& trajectoryCollection,

const start parameters container t& startParametersCollection,

const ActsAlignment::AlignmentOptions<fit options t=& alignOptions) const {

* |ttakes asetof tracks and figure out the sets of detector elements which can
be aligned and are requested to be aligned => o

* Perform the fit for each track, and estimate the chi2 derivatives w.r.t. o

* Update acusing provided alignment parameter updater

* Stop iteration of the above two steps when provided converging criteria is met

Interface to Millepede ll

Interface to Millepede is
not available yet

Implementation of a Mille
data writer should be
straightforward

Steer.txt specifiying the
location of the data file etc.

l

User program

-

MiLLE

(@)

(text files) (data files)

PEDE program

[3

itexr.ﬁlesh

1 N
Figure 1: The subprogram MILLE (left), called inside the wuser program, and Result file

the stand-alone program PEDE (right), with the data flow from text and data

files to text files.

Binary data files (residual, measurement error, derivatives
w.r.t. track parameters and alignment parameters) need to

be written out first

Millepede.res

Standalone program executed via
command lines (within user program):
e.g. pede -c steer.txt

Summary

* Basicingredients (residuals, alignment parameters derivatives) and geometry
context for track-based alignment is available in ACTS

* Will provide derivatives with alignment parameters as rotation around local axes
* (Consider to provide derivatives w.r.t. layer/volume geometry
* (Consider to add interface to Millepedell

* Needs dedicated alignment tests. Might start with small numbers of alignment
parameters

* More development manpower is needed with increasing interest in ACTS alignment

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

