SPONSORED BY THE E P R & D
* Federal Ministry @)
ki of Education Programme on Technologies for Future Experiments
and Research

2022 ACTS Workshop

detray - Overview and Status

Joana Niermann

27.09.2022

The detray Project

The ACTS Kalman Filter on GPU

® |nvestigation of intra- and inter-track parallelization.
® Speedup of up to 4.6 towards multithreaded CPU, for more than 1000 tracks.
® Polymorphic geometry cannot be transferred to CUDA kernels.

® Telescope geometry and single surface type propagation are not very realistic.

[Ny . i 4 ‘ -] 4/’,,/"
) a1}
7 - "
General Considerations

® Geometry classes without runtime polymorphism
d et ra (no virtual function calls).

® Flat container structure using vecmem, with

index based data linking.

P
powered by a\.IS_, ® |mplementation of core package usable in host
and device code.

The detray Project 2022 ACTS Workshop

The detray Geometry Model

Building Blocks

® Volumes: logical containers for
surfaces, defined by their boundary
(portal) surfaces.

® Surfaces: Placed by transforms and
defined by boundary masks in local
coordinates.

® Masks: Define the shape types by
defining local coordinates and extent of
surfaces. .

® Portals: Surfaces that tie volumes
together through links (No static
difference to sensitive surfaces).

Trmin

® Material: Added to a surface in same
way as a mask (link + tuple unrolling).
Many predefined materials available.

No runtime polymorphism: Every type needs its own container: Compile time unrolling of mask
container.

Geometry Implementation 2022 ACTS Workshop

Heterogeneous Computing Model

Implementation in detray

® Goal: outsource many-track navigation to device.
® Need to handle host-device memory transfers.
® Core classes templated on STL vs. vecmem containers.

® The geometry data structures are built host side and memory allocation strategy is
determined by vecmem memory resources.

#include <vecmem/containers/vector.hpp>

// Transform store using managed memory #include <vecmem/containers/device_vector.hpp>
vecmem::cuda::managed_memory_resource mng_mr;

// Kernel-side construction
// Build with host vector type __global__ void test_kernel(store_view sv) {
transform_store<vecmem::vector> store(mng_mr); // Build with device vector type

transform_store<vecmem::device_vector> store(sv);

// Get store view object
auto sv = detray::get_data(store); // Do something
// Run the kernel
test_kernel<<<block_dim, thread_dim>>>(sv);

Implementation

Track State Propagation

Main Classes

® Propagator: steers the workflow between the stepper, navigator and the actors.
® Navigator: Moves between detector volumes and resolves next candidate surface.
® Stepper: Advances the track-state/covariance through the geometry.

® Actors/Aborters: Perform various tasks during propagation and watch termination criteria.

I

outer portal

inner portaly,,

A\

outer portaly, ‘

I: Local navigation in V;
II: crossing portals between V, and Vi41
11I: Local navigation V;4 1

IV: crossing outer portal Vi+1
(leaving the detector)

Geometry Implementation Workshop

Geometry Navigation

Trust-based candidate evaluation

... cache line-surface intersections. trust levels determine update method:
Full trust: Do nothing.

High trust: Only update the current next target surface.

Fair trust: Update all entries and sort again.

No trust: (Re-)initialize the entire (current) volume, i.e. fill cache and sort by distance.

= Stepper/actors can lower trust level to influence navigation update policy.

Local Navigation in a Volume -

® Accelerators provide neighbourhood 0
lookups during navigation candidate
search. *

£

Navigate local neighborhood, before H
reassuming volume navigation 50
Abstract interface towards navigation "
(iterator based) 150

Geometry Implementation

150

Runge-Kutta Stepper

Numerical Integration

® Inhomogeneous B-Field: No track
solution in closed form (e.g. helix)

® Adaptive Runge-Kutta Algorithm for
Integration

® Gets the distance to next target
surface and adjusts stepsize according
to integration error (B-field)

® Transport the track parameter
covariance in the same way

Geometry Implementation

2022 ACTS Workshop 6

Summary - Status

Project Status

Implementation of tracking geometry description: Index based linking, no runtime
polymorphism, using flat containers.

Fully featured prototype (toy) detector, modelled after ACTS generic detector’s pixel
detector.

Successful porting of the core implementation to device, using vecmem.

Successful track state propagation with covariance transport through toy detector
(homogeneous B-field).

Integration of covfie library.

Integration of actsvg.

Outlook

Summary - Outlook

wipP
® Prepared detector and indexing to reference grids and potentially other accelerator data
structures on a per volume basis.
® New grid implementation for local navigation.
® Comprehensive local coordinate system implementation, including corresponding Jacobians.
® Material Interaction actor.
® |mplement inhomogeneous B-field in the toy detector as first step.
Outlook
® Rigorous testing (benchmarks , physics performance ...)
® Interface to read ACTS tracking geometry implementations.
® More subdetector geometry support/appropriate accelerator data structures.
® Extend backend support, e.g. SYCL.
[]

Further investigation of host-side optimization (vectorization, multi-threading of
propagation).

Outlook

y Container Structure

In ACTS: Jagged memory layout of volumes containing layers (might be removed), containing
surfaces.

Linking by Index

@8 Transform
® V\olumes keep index ranges . Volume
into surface/portal containers. @ Portal D Mask
@ surface (different types)

® Surfaces/Portals keep indices
into the transform and mask
containers.

® Portals link to adjacent
volume and next surfaces
finder (local grid).

® Surfaces link back to mother
volume.

= Only transforms and masks contain geometric data, all other classes are uniquely used for
container indexing.

2022 ACTS Workshop

Toy Detector - The TML Pixel Detector

Toy Detector

® |mplement a small geometry, independent from io module

® All links are manually checked for consistency

The toy detector contains:

® A beampipe (r = 27 mm)
® An inner layer (fmin = 27 mm, fymax = 38 mm) with 224 pixel module surfaces
® A gap volume (rynin = 38 mm, ryax = 64 mm)

® An outer layer (fmin = 64 mm, rmax = 80 mm) with 448 pixel module surfaces

® Add grid will be added for local navigation.

= Provides a reliable, dynamically generated geometry that can be used for testing and rapid
development.

= Complexity (number of barrel and endcap layers) can be configured for easier debugging.

2022 ACTS Workshop

Geometry Validation

Ray Scan

® Shoot straight line rays through
detector setup

® Record every intersection, together
with associated volume index.

® Sort by distance and check for

consistent crossing of adjacent portals.

ylmm]
°

40

60

-80

80 60 40 20 0 20 40 60 80
x{mm]

Figure 1: Intersections produced by ray scan.

Two inner barrel layers modelled after ACTS
Generic Detector (TrackML challenge).

Geometry Linking Validation

® Compare ray scan with geometry
linking graph.

® Provides a coarse, but automated
check of geometric setup.

Navigation Validation

® Shoot ray/helix, but this time follow
with navigator.

® Compare the entire intersection trace
with the objects encountered by
navigator.

See also: Fig2(TrackML) https://sites.google.com/site/trackmlparticle/

2022 ACTS Workshop

https://sites.google.com/site/trackmlparticle/

The detray Actor Mo

// initialize the navigation
navigator.init (propagation);

. . 2
// Run while there is a heartbeat What is an actor in detray?

while (propagation.heartbeat) {
® Callable that performs a task after

// Take the step every step.
stepper.step(propagation);

1 PO ® Has a per track state, where results
// And check the status can be passed.
navigator.update (propagation); ® Can be plugged in at compile time.
// Run all registered actors ® In detray: Aborters are actors
run_actors (propagation.actor_states, propagation);

Implementation

® Actors can 'observe’ other actors, i.e. additionally act on their subject’s state.
® Observing actors can be observed by other actors and so forth (resolved at compile time!).

® Observer is being handed subject’s state by actor chain
= no need to know subject's state type and fetch it.
® Greater flexibility in testing different setups

= Currently implemented: Navigation policies, pathlimit aborter, propagator inspectors.

2 ACTS Workshop

Actor Chain Implementation

Overview of actor implementation:

// Actor with observers

template <class actor_impl_t = actor,
typename... observers>
/// Base class actor implementation class composite_actor final
struct actor { public actor_impl_t {
/// Tag whether this is a composite type struct is_comp_actor : public std rue_type{}
struct is_comp_actor : // Implement this actor
public std::false_type {}; using actor_type = actor_impl_t;
// Actor implementation + notify call
/// Defines the actors state void operator ()(...) const { [...] notify(...);}
struct state {};
g private:

// Call all observers
void notify(...) const {...}

- . By
Building a chain:
// Define types
using observer_lvll = composite_actor<dtuple, print_actor, example_actor_t, observer_lvl2>;
using chain = composite_actor <dtuple, example_actor_t, observer_lvli>;

// Aggregate actor states to be able to pass them through the chain
auto actor_states = std::tie(example_actor_t::state, print_actor::state);

// Run the chain

actor_chain<dtuple, chain> run_chain{};

run_chain(actor_states, prop_state);

2 ACTS Workshop

	The <detray> Project
	Geometry Implementation
	Outlook
	Appendix

