
2022 ACTS Workshop
detray - Overview and Status

Joana Niermann

27.09.2022

The detray Project

The ACTS Kalman Filter on GPU

• Investigation of intra- and inter-track parallelization.
• Speedup of up to 4.6 towards multithreaded CPU, for more than 1000 tracks.
• Polymorphic geometry cannot be transferred to CUDA kernels.
• Telescope geometry and single surface type propagation are not very realistic.

General Considerations

• Geometry classes without runtime polymorphism
(no virtual function calls).

• Flat container structure using vecmem, with
index based data linking.

• Implementation of core package usable in host
and device code.

The detray Project 2022 ACTS Workshop 1 / 8

The detray Geometry Model

Building Blocks

• Volumes: logical containers for
surfaces, defined by their boundary
(portal) surfaces.

• Surfaces: Placed by transforms and
defined by boundary masks in local
coordinates.

• Masks: Define the shape types by
defining local coordinates and extent of
surfaces.

• Portals: Surfaces that tie volumes
together through links (No static
difference to sensitive surfaces).

• Material: Added to a surface in same
way as a mask (link + tuple unrolling).
Many predefined materials available.

No runtime polymorphism: Every type needs its own container: Compile time unrolling of mask
container.

Geometry Implementation 2022 ACTS Workshop 2 / 8

Heterogeneous Computing Model

Implementation in detray

• Goal: outsource many-track navigation to device.

• Need to handle host-device memory transfers.

• Core classes templated on STL vs. vecmem containers.

• The geometry data structures are built host side and memory allocation strategy is
determined by vecmem memory resources.

include <vecmem / containers / vector .hpp >

// Transform store using managed memory
vecmem :: cuda :: managed_memory_resource mng_mr ;

// Build with host vector type
transform_store < vecmem :: vector > store (mng_mr);

// Get store view object
auto sv = detray :: get_data (store);

// Run the kernel
test_kernel <<<block_dim , thread_dim >>>(sv);

include <vecmem / containers / device_vector .hpp >

// Kernel -side construction
__global__ void test_kernel (store_view sv) {

// Build with device vector type
transform_store < vecmem :: device_vector > store (sv);

// Do something
}

Geometry Implementation 2022 ACTS Workshop 3 / 8

Track State Propagation

Main Classes

• Propagator: steers the workflow between the stepper, navigator and the actors.

• Navigator: Moves between detector volumes and resolves next candidate surface.

• Stepper: Advances the track-state/covariance through the geometry.

• Actors/Aborters: Perform various tasks during propagation and watch termination criteria.

Geometry Implementation 2022 ACTS Workshop 4 / 8

Geometry Navigation

Trust-based candidate evaluation

• . . . cache line-surface intersections. trust levels determine update method:

• Full trust: Do nothing.

• High trust: Only update the current next target surface.

• Fair trust: Update all entries and sort again.

• No trust: (Re-)initialize the entire (current) volume, i.e. fill cache and sort by distance.

⇒ Stepper/actors can lower trust level to influence navigation update policy.

Local Navigation in a Volume

• Accelerators provide neighbourhood
lookups during navigation candidate
search.

• Navigate local neighborhood, before
reassuming volume navigation

• Abstract interface towards navigation
(iterator based)

Geometry Implementation 2022 ACTS Workshop 5 / 8

Runge-Kutta Stepper

Numerical Integration

• Inhomogeneous B-Field: No track
solution in closed form (e.g. helix)

• Adaptive Runge-Kutta Algorithm for
Integration

• Gets the distance to next target
surface and adjusts stepsize according
to integration error (B-field)

• Transport the track parameter
covariance in the same way

Geometry Implementation 2022 ACTS Workshop 6 / 8

Summary - Status

Project Status

• Implementation of tracking geometry description: Index based linking, no runtime
polymorphism, using flat containers.

• Fully featured prototype (toy) detector, modelled after ACTS generic detector’s pixel
detector.

• Successful porting of the core implementation to device, using vecmem.

• Successful track state propagation with covariance transport through toy detector
(homogeneous B-field).

• Integration of covfie library.

• Integration of actsvg.

Outlook 2022 ACTS Workshop 7 / 8

Summary - Outlook

WIP

• Prepared detector and indexing to reference grids and potentially other accelerator data
structures on a per volume basis.

• New grid implementation for local navigation.

• Comprehensive local coordinate system implementation, including corresponding Jacobians.

• Material Interaction actor.

• Implement inhomogeneous B-field in the toy detector as first step.

Outlook

• Rigorous testing (benchmarks , physics performance . . .)

• Interface to read ACTS tracking geometry implementations.

• More subdetector geometry support/appropriate accelerator data structures.

• Extend backend support, e.g. SYCL.

• Further investigation of host-side optimization (vectorization, multi-threading of
propagation).

Outlook 2022 ACTS Workshop 8 / 8

Backup

Detray Container Structure

In ACTS: Jagged memory layout of volumes containing layers (might be removed), containing
surfaces.

Linking by Index

• Volumes keep index ranges
into surface/portal containers.

• Surfaces/Portals keep indices
into the transform and mask
containers.

• Portals link to adjacent
volume and next surfaces
finder (local grid).

• Surfaces link back to mother
volume.

⇒ Only transforms and masks contain geometric data, all other classes are uniquely used for
container indexing.

2022 ACTS Workshop

Toy Detector - The TML Pixel Detector

Toy Detector

• Implement a small geometry, independent from io module
• All links are manually checked for consistency

The toy detector contains:

• A beampipe (r = 27 mm)
• An inner layer (rmin = 27 mm, rmax = 38 mm) with 224 pixel module surfaces
• A gap volume (rmin = 38 mm, rmax = 64 mm)
• An outer layer (rmin = 64 mm, rmax = 80 mm) with 448 pixel module surfaces
• Add grid will be added for local navigation.

⇒ Provides a reliable, dynamically generated geometry that can be used for testing and rapid
development.

⇒ Complexity (number of barrel and endcap layers) can be configured for easier debugging.

2022 ACTS Workshop

Geometry Validation

Ray Scan

• Shoot straight line rays through
detector setup

• Record every intersection, together
with associated volume index.

• Sort by distance and check for
consistent crossing of adjacent portals.

Figure 1: Intersections produced by ray scan.
Two inner barrel layers modelled after ACTS
Generic Detector (TrackML challenge).

Geometry Linking Validation

• Compare ray scan with geometry
linking graph.

• Provides a coarse, but automated
check of geometric setup.

Navigation Validation

• Shoot ray/helix, but this time follow
with navigator.

• Compare the entire intersection trace
with the objects encountered by
navigator.

See also: Fig2(TrackML) https://sites.google.com/site/trackmlparticle/

2022 ACTS Workshop

https://sites.google.com/site/trackmlparticle/

The detray Actor Model

// initialize the navigation
navigator .init(propagation);

// Run while there is a heartbeat
while (propagation . heartbeat) {

// Take the step
stepper .step(propagation);

// And check the status
navigator . update (propagation);

// Run all registered actors
run_actors (propagation . actor_states , propagation);

}

What is an actor in detray?

• Callable that performs a task after
every step.

• Has a per track state, where results
can be passed.

• Can be plugged in at compile time.
• In detray: Aborters are actors

Implementation

• Actors can ’observe’ other actors, i.e. additionally act on their subject’s state.
• Observing actors can be observed by other actors and so forth (resolved at compile time!).
• Observer is being handed subject’s state by actor chain

⇒ no need to know subject’s state type and fetch it.
• Greater flexibility in testing different setups

⇒ Currently implemented: Navigation policies, pathlimit aborter, propagator inspectors.

2022 ACTS Workshop

Actor Chain Implementation

Overview of actor implementation:

/// Base class actor implementation
struct actor {

/// Tag whether this is a composite type
struct is_comp_actor :

public std :: false_type {};

/// Defines the actors state
struct state {};

};

// Actor with observers
template <class actor_impl_t = actor ,

typename ... observers >
class composite_actor final :

public actor_impl_t {
struct is_comp_actor : public std :: true_type {};
// Implement this actor
using actor_type = actor_impl_t ;
// Actor implementation + notify call
void operator ()(...) const { [...] notify (...);}

private :
// Call all observers
void notify (...) const {...}

};Building a chain:

// Define types
...
using observer_lvl1 = composite_actor <dtuple , print_actor , example_actor_t , observer_lvl2 >;
using chain = composite_actor <dtuple , example_actor_t , observer_lvl1 >;

// Aggregate actor states to be able to pass them through the chain
auto actor_states = std :: tie(example_actor_t :: state , print_actor :: state);

// Run the chain
actor_chain <dtuple , chain > run_chain {};
run_chain (actor_states , prop_state);

2022 ACTS Workshop

	The <detray> Project
	Geometry Implementation
	Outlook
	Appendix

