
Acts/traccc Event Data Model
Some thoughts…

Attila Krasznahorkay

VecMem

● The R&D project practically only uses the
vecmem::(device_)(jagged_)vector types from
VecMem

○ We “invented” some other data types (static vector/array) as
well, but they did not find a use yet

● VecMem provides a convenient way to manage these
1D/2D vectors in host and device code

○ Including STL-like access to them in device code, and efficient
ways of copying them from/to a device

2

https://github.com/acts-project/vecmem/tree/main/core/include/vecmem/containers

Views

● We pass containers from host- to device code using “view types”
○ These are similar to std::span with “some amount of” resizability

● Algorithms in traccc (are meant to) receive input data through views
○ They don’t need to know how the 1D/2D vectors were created and managed in memory, they just

need to know where they are in memory “right now”
○ Host code can work like this happily as well

3

https://en.cppreference.com/w/cpp/container/span
https://github.com/acts-project/vecmem/blob/main/core/include/vecmem/containers/data/vector_view.hpp

Collections / Containers

● In traccc all data is stored in either
simple 1D vectors (collections) or in a
1D+2D vector combination (container)

○ Much of our data can be described using N
“elements” that each have MN “items”

● Not clear to me yet how we would
map this into Acts data structures
eventually 🤔

4

https://github.com/acts-project/traccc/blob/main/core/include/traccc/edm/cluster.hpp

AoS / SoA

● At the moment traccc uses an AoS
data model

○ All our structs are small. They map
(reasonably) well onto GPU memory load
operations.

○ Larger structs become less efficient like
this

● As Paul showed, Acts (and ATLAS
offline) use a SoA memory layout
instead

○ It is necessary for vectorisation on CPUs,
and generally provides a more flexible
EDM

5

struct spacepoint {
 float x, y, z;
};

using spacepoint_collection =
 vecmem::vector<spacepoint>;

struct spacepoint_collection {
 vecmem::vector<float> x, y, z;
};

(My) Questions / Discussion Points

● How to declare the types in Acts?
○ Even if EDM classes have a templated user-facing API, they must have a non-templated base

(device code offload must not be exposed to the user)
○ How to integrate the VecMem based memory management with the storage backend developed for

the track states (and with ATLAS offline’s own memory management)?

● We can definitely require clients to use std::pmr::memory_resource to interact with
Acts

○ I’m less sure about publicly exposing VecMem container types in the Acts API… 🤔

6

https://github.com/acts-project/vecmem
https://en.cppreference.com/w/cpp/memory/memory_resource
https://github.com/acts-project/vecmem

http://home.cern

7

http://home.cern

