N\

chun)) ATLAS

NS EXPERIMENT

Acts/traccc Event Data Model
Some thoughts...

Attila Krasznahorkay

v core
> cmake
v include /vecmem

v containers

e The R&D project practically only uses the

v data
vecmem: : (device_)(jagged)vector types from j:jj:jvzzzzazissp
VecMem jagged:vector:view.hpp
o We “invented” some other data types (static vector/array) as :ZEEZ:_:ZFL:SEP
well, but they did not find a use yet 5 details
e \VecMem provides a convenient way to manage these ’ :‘rz‘y‘hpp
1D/2D vectors in host and device code const_device_array.hpp
o Including STL-like access to them in device code, and efficient ;‘::isct;d:rvr:;;e:o“hpp
ways of copying them from/to a device Pl Lt

jagged_device_vector.hpp

jagged_vector.hpp

static_array.hpp
static_vector.hpp

vector.hpp 2

https://github.com/acts-project/vecmem/tree/main/core/include/vecmem/containers

T n: pace vecmem {
S @nele namespace data {
v include /vecmem
v containers

v data

jagged_vector_buffer.hpp dac vecmem::vector, C vecmem::array
jagged_vector_data.hpp vecmem: : (const)device vector, vecmem: : (const)device array

jagged_vector_view.hpp
vector_buffer.hpp
vector_view.hpp
> details
> impl template <typename TYPE>
array.hpp cla vector view

e \We pass containers from host- to device code using “view types”
o These are similar to std::span with “some amount of” resizability

e Algorithms in traccc (are meant to) receive input data through views
o They don’t need to know how the 1D/2D vectors were created and managed in memory, they just
need to know where they are in memory “right now”
o Host code can work like this happily as well

https://en.cppreference.com/w/cpp/container/span
https://github.com/acts-project/vecmem/blob/main/core/include/vecmem/containers/data/vector_view.hpp

> <typename

Collections / Containers I

header t, typename

“t container types {

ac header t

ac item t

using
using

using

using

using

using

using

using

ert(std::is const<header t>::value == false,
"The header type must not be constant");

t(std::is const<item t>::value == false,
"The item type must not be constant");

ic header t ac item t
host = host container<header t, item t>;
ac header t dc item t
device = device container<header t, item t>;
ac header t ac item t

const device = device container<const header t, const item t>;

c header t ac item t
view = container view<header t, item t>;
ac header_t dc item t
const view = container view<const header t, const item t>;

header t / @c item t
data = container data<header t, item t>;
c header t dc item t
const data = container data<const header t, const item t>;

c header t / @c item t
buffer = container buffer<header t, item t>;

In traccc all data is stored in either
simple 1D vectors (collections) or in a

1D+2D vector combination (container)

o Much of our data can be described using N
“elements” that each have M, “items”

Not clear to me yet how we would
map this into Acts data structures
eventually &

https://github.com/acts-project/traccc/blob/main/core/include/traccc/edm/cluster.hpp

At the moment traccc uses an AoS

data model
o All our structs are small. They map
(reasonably) well onto GPU memory load
operations.
o Larger structs become less efficient like
this
As Paul showed, Acts (and ATLAS
offline) use a SOA memory layout

instead

o Itis necessary for vectorisation on CPUs,
and generally provides a more flexible
EDM

struct spacepoint {
float x, y, z;

}i

using spacepoint collection =
vecmem: :vector<spacepoint>;

struct spacepoint_collection {
vecmem: :vector<float> x, y, z;

}i

(My) Questions / Discussion Points

e How to declare the types in Acts?
o Even if EDM classes have a templated user-facing API, they must have a non-templated base
(device code offload must not be exposed to the user)
o How to integrate the VeclMem based memory management with the storage backend developed for
the track states (and with ATLAS offline’s own memory management)?

e \We can definitely require clients to use std::pmr::memory_resource to interact with
Acts

o I'mless sure about publicly exposing VecMem container types in the Acts API... =

https://github.com/acts-project/vecmem
https://en.cppreference.com/w/cpp/memory/memory_resource
https://github.com/acts-project/vecmem

Cﬁw
\
N/ A

http://home.cern

http://home.cern

