Laboratoire d’Annecy de Physique des Particules

Tracking with Hashing in ACTS

Jeremy Couthures

M2 internship at LAPP, Annecy
Supervised by Jessica Levéque and Sabine
Elles

—

The Hashing step

Track finding suffers from combinatorial issue:
Try to expand each seed with the remaining Space Points

—> Two speed up approaches:

* Reduce the number of seeds (linear)
* Reduce the number of remaining Space Points (combinatorial)

Introduction of the hashing step:
1. Groups space points into buckets
2. Seeding is done separately on each bucket to reduce the number of seeds
fed to the TrackFinding Algorithm

* Method previously investigated by Sabrina Amrouche
* My internship goal: import the hashing step with the Annoy algorithm into ACTS
and investigate performance with the full tracking chain

—

https://indico.cern.ch/event/808288/contributions/3398590/attachments/1831775/3000028/AltEFTrackingForum_Hashing.pdf

Evaluation of performance

Physics: (CKF performances)

tracks matched to a truth particle

 efficiency = # reconstructible particles (> 1GeV, > 9 hits)
. fake rate = # tracks not matched
reconstructed tracks

reconstructible particles with > 1 track match
#reconstructible particles (> 1GeV, > 9 hits)

* duplication rate =

Computing:
* Monitoring of CPU time (sequencer)

—

Simulation ApprOaCheS

Space Points
building
Actual Planned Full parallelization:

* Hashing creates small
groups of Space Points
(=buckets)

* Seeding and tracking are
applied on each bucket

Seeding Hashing

Seeding Seeding Seeding

Track finding — small number of seeds

and possible expand
combinations per bucket

* Putting the tracks back

Ambiguity together,

resolver :
* And remove duplicates

A

Simulation

Seeding

-

y

Space Points
building

.

, A

Hashing
PR 2 2 2

Seeding Seeding Seeding

A Bl

Approaches

No Ambiguity resolver yet
— cannot remove duplicated
tracks

— cannot estimate the impact
of duplication rate on total
running time

Simulation
y
Space Points
building
Actual Y planned
Seeding Hashing Hashing
PR A 2 2N O A 2 2

Seeding Seeding Seeding §§ Seeding

A Bl

Seeding Seeding

RN
Merge Seeds
\(remove identicals)‘,

Y

Approaches

* Seeding parallelization:
* Less seeds per bucket

* Expected to loose time on
merging

Hashing algorithm

Approximate Nearest Neighbors Oh Yeah (Annoy)
K Nearest Neighbors Machine Learning Algorithm

— need to define a distance, hence a metric
relevant for our problem

* Angular metric: (see next slides)
* Features: x,y

« Parameter: number of neighbors in a bucket (set
to 20 here)

—

https://github.com/spotify/annoy

Annoy training

Space separation Corresponding binary tree

Takes two /

random points

iteratively

(I)} Ny h |
¥i gem Tum n ! “nee
[(/L ‘ E -‘. \ :
wejD hoEm mE B0 DD I " .
GOOne Dmnm Dum OD]OGD(MD a nlnl n lo.

m(m ﬂ@iﬁ’i@..ﬂ.@;O@O@@O..@l.....l‘.l

esu%@@ 100 60 e 1o 00
o0 o D

on

00

Annoy query

Merge neighbor subspaces Union of trees’ subspace

* Annoy tuning parameters: number of
neighbors, number of trees, metric used,
features used, number of subspace to look at

—

Metric definition

S = arc length

Metric used : anqular distance

6=S/R

where S = distance travelled and R = radius of the circle /

TR * Projection of a track on a circle
/ o Vi

] I ’7?’_,::: * Bucket: the nearest points on that circle

— High pT track ~ linear track: all the hits are
expected to fall in the same bucket

— Low pT tracks at high p:
Buckets may contain mixed hits from several
tracks — Bad seeds?

Physics performances (no hashing)

Tracking efficiency

Efficiency
=)
[*=1

=
5]

N

06
05
04
0.3 H=0
H=150
0z =100
0.1
ﬂ||||||||||||||||||||
0 20 40 [B0 100
Truth pT [GeVig]
Tracking efficiency
& 1: L] = == L
B,of - ™
:Eﬂ.ﬂ'_— L™ m .
Hogp W -
07f
0sf
0sE
04f
naf H=0
i H=30
0k
:lIIIIIIIIIIIIIIIIIIIlIIIIlIIII|
03] - U 1] 3

Truthn

Fake rate
ra
£

20

15

025

02

015

01

0.05

Tracking fake rate

bl
]
pT [Gavic]
Tracking fake rate
w10
H=0
p=50 h
e +
1= 100
At s
"_I_'I_I_"_l_rlllﬂIIIII"lIIIIII
-3 -2 -1 0 1 2 3

Duplication rale

Duplication rate

Reference

Duplication rate

1
asf
08 '}i * ++ '}
07f Pd‘]+
06f u=0
[=50
0sf |®u=100
BI':||||||||||||||||||||
o 20 a0 &0 B0 100
pT [Gavie]
Duplication rate
1_
ﬂ.E‘_— a® '™
C L L
0sf-
i n n
07k R AR
™ L]
08f u=0
H=350
0sF |®u=100
-I|IIIIIIIII|IIII|II|||IIII|IIII|I
R 1 2 3
T

5000 tt
events

generic
detector

Physics performances with hashing

Tracking efficiency

Efficiency
=)
[
3

=

04

|
|] -
03 \‘”'0
u=50
2F |u=100

\

\

|

|

|

\
\
\

/

01 /
\
\

\ﬂ"/'lll'lll'll"ll"l'
0 20 40 G0 80 100

Truth pT [GeVig]
Tracking efficiency

Efficiency
=}
[

=
oo

W=0
H=50

@ o
I

0&
04
03

0z

T T PR T

n|||||||||||||||||||||||||||||||

-2 -1 0 1 2 3

Bucket size = 20 (default)

Truthm

Tracking fake rate

u=10
W=
)i =100

Tracking fake rate

b L1 |

00
pT [Gavic]

Fake rate

o5l

=10
W=350

Cuplication ralsa
=
[r=1

=
=]

o7k

—
T

Duplication rate

é-m.ww;ﬁﬂfwﬁ

L
06F =0
m H=50
05F |®u=100
ﬂ"- 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1
0 20 a0 &0 B0 100
pT [GaVie]
Duplication rate
1
g u=0
& =50
sk H
S =100
g
2 I
ﬂ.E_— ™ ™
IEIEE m
9-5:‘ m,_‘“'m
N L] ﬂ" " L]
r L,
0sF - ™
-I|IIII|IIII|IIII|IIII|IIII|IIII|I
B 1 2 3
1

Physics performance ratio

L Tracking efﬂuency ratio Tracking fake rate ratio Duplication rate ratio
. 40 12
|y ¥ up=100
t t [7,0] _
" mhqﬂh“ I +l ,.|l] 35 bou=s0 I
. T '|' Bou=0 %“' 'tttt H
& 530 11 N '
m =~
%0.8' u_g o ..ll . ‘*** ++ ! |
5 S 251 ¥ Z
: £ ' ' 810 BRI
[0 a r [°]
2 061 £20 -
e 2 it ° v
B I [(]
£ o 15 ' 509
2 044 T 4 4
3 g ' 8
5 & 10 2 R £
=}
024 Y u=100 | rr’ ' 3 084 ¥ p=100
b p=50 0.5 £ b op=50
b op=0 y v b op=o0
0.0 T T T T T 0.0 T T T T T T 0.7 T T T T T T
20 4 60 80 100 0 20] 60 80 100 0 20 40 60 80 100
pT [GeV/c] pT [Gev/c] pT [GeV/c]

* Improved efficiency for high pT > 15 GeV
* Higher fake rate for low pT < 15 GeV at high p
* Higher duplication rate for y=0
— More seeds?
* Lower reconstruction efficiency at low pT with high p
— Bucket size? Metric?

ﬁ

More seeds with hashing even after

removing identical ones — Why?

seedfinderConfigArg = SeedfinderConfigArg(
r=(None, 200 * u.mm), # rMin=default, 33mm
deltaR=(1 * u.mm, 60 * u.mm),
collisionRegion=(-250 * u.mm, 250 * u.mm),
z=(-2000 * u.mm, 2000 * u.mm),
maxSeedsPerSpM=1,
sigmaScattering=50,
radLengthPerSeed=0.1,
minPt=500 * u.MeV,
bFieldInZ=1.99724 * u.T,
impactMax=3 * u.mm,

ﬁ

Metric issue?

1. Metric not adapted to low pT:

Mixed hits of several tracks in the same
bucket

— Need to improve the metric

2. Possible improvement:
Increase bucket size to contain a full track

even at low pT

We tested..

Impact of the bucket size

Bucket size =50

Tracking efficiency i Tracking fake rate Duplication rate
_ m . om aam. Al
Eu =g —vrram %24 g I:
30 g2 s I
z £ 29 FoF
\ 18 R
\ 16 Do.a._-
\\ 14
‘ 12 07
“ 10 r
‘ X
06F
Fi=0 f p=0 - H=0
E | [L
o |
\0'25_ feu=50 4 H=350 0sf =50
\{I\1;— / 2 [
:||/||||||||||||||||||| L = R_ _" -] S A FETAR 1, | 04-|||||||||||||||||||||
20 0 &0 B0 100 % 20 40)] &0 100 “0 20 a0 60 B0 100
Teuth pT [GeWig] pT [GeVig] pl [GaVig|
Tracking efficiency i Tracking fake rate Duplication rate
%10~
1— — 1
T ”% 2F 3
g E gL
508 o L
E E -IFULE'_ 'Egg.-_
“osk “E T
: o -
ore 14f “osf
B.E'E— 1-2:_ E
0sF 13_ 07
n.qz— osb
03F H=0 i p=0 ofF p=0
02F 4=50 04f y=50 o5l u=50
01F 02f
SR N A AT A I | :|I||||||--||||||I|||||||..I ta ol by by by o by y L1y
03 2 -] 1 2 3 R R 0 1 2 3 N 1 F 3

Truthn n l

running time/fevent (s)

10 5
1 =% =100 total: 3724 ms /

CPU time (no hashing)

Reference
time per event

! = p=o0total: 114 ms

—&— p =50 total: 1397 ms /h

CompIeX|ty
Space Point Maker is linear
* Seeding: worst case O(n?)
observed ~O(n?)
* Track Finding is combinatorial O(n!)
and linear with the number of seeds

running time/event (s)

CPU time with hashing

Hashing Hashing/Reference ratio

time per event

] =
—& p = 0total: 962 ms 3
107 5 i
] —— =50 total: 10966 ms 3 1021
—¥ 1 = 100 total: 19280 ms £ :
=
o
£
=
14
)
£
£
n
2
o 1001
£
5 { —#— p=0total: 962 ms
£ { =+ u=50total: 10966 ms
C
3
[

10-1 + =% =100 total: 19280 ms

“%@r 35%
N Space Points — N Buckets ™
(we need something more clever...)

Mean seeding time per bucket (size = 20): 0.9 ms (constant with p)

Summary

* Implementation of Annoy in ACTS
* We can compare performances with and
without Annoy

* First observations with hashing:
— Speed is dominated by the seeding
— Physics performance get worst at low pT
with increasing [

ﬁ

Issues with the sequencer

* One sequencer ; each event has a different number of
Space Points — number of buckets — number of
seeding needed

— have to find the maximal number of buckets among
the events

* Was not able to run a sequencer until hashing and

rerun the same after adding the remaining algorithm —
had to run a copy

* Was not able to run the seeding in parallel

ﬁ

« Seeding parallelization in ACTS to be worked on

« Ambiguity resolver not implemented yet In ACTS
— cannot compare duplicate rates

— cannot do a full parallelization

* Need ML optimization (bucket size, new metric)
* Metric learning from data or simulated MC samples?

* Replace Annoy by a "novel” Neural Network
architecture (Transformers?)

QUESTIONS?

ﬁ

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21

