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The Hashing step

Track finding suffers from combinatorial issue: 
Try to expand each seed with the remaining Space Points

 →  Two speed up approaches: 
● Reduce the number of seeds (linear)
● Reduce the number of remaining Space Points (combinatorial)
 

Introduction of the hashing step:
1. Groups space points into buckets
2. Seeding is done separately on each bucket to reduce the number of seeds 
fed to the TrackFinding Algorithm

● Method previously investigated by Sabrina Amrouche
● My internship goal: import the hashing step with the Annoy algorithm into ACTS 

and investigate performance with the full tracking chain

https://indico.cern.ch/event/808288/contributions/3398590/attachments/1831775/3000028/AltEFTrackingForum_Hashing.pdf
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Evaluation of performance

Physics: (CKF performances)

• efficiency = 

• fake rate = 

• duplication rate = 

Computing:
• Monitoring of CPU time (sequencer)
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Approaches

Full parallelization:

● Hashing creates small 
groups of Space Points 
(=buckets)

● Seeding and tracking are 
applied on each bucket

 → small number of seeds 
and possible expand 
combinations per bucket

● Putting the tracks back 
together, 

● And remove duplicates
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• No Ambiguity resolver yet 
→  cannot remove duplicated 
tracks
→ cannot estimate the impact 
of duplication rate on total 
running time
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Approaches
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• Seeding parallelization:

● Less seeds per bucket

● Expected to loose time on 
merging
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Approximate Nearest Neighbors Oh Yeah (Annoy)
k Nearest Neighbors Machine Learning Algorithm
→  need to define a distance, hence a metric 
relevant for our problem

• Angular metric: (see next slides)
• Features: x, y
• Parameter: number of neighbors in a bucket (set 

to 20 here)

Hashing algorithm

https://github.com/spotify/annoy
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Annoy training

Space separation Corresponding binary tree

Takes two 
random points 
iteratively
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Annoy query

• Annoy tuning parameters: number of 
neighbors, number of trees, metric used, 
features used, number of subspace to look at

Approximation

Merge neighbor subspaces Union of trees’ subspace



10

Metric definition

● Projection of a track on a circle
● Bucket: the nearest points on that circle

 → High pT track  ~ linear track: all the hits are 
expected to fall in the same bucket

 → Low pT tracks at high µ:
Buckets may contain mixed hits from several 
tracks  Bad seeds?→
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Physics performances (no hashing)
Reference

5000 tt 
events

generic 
detector
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Physics performances with hashing

Bucket size = 20 (default)
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Physics performance ratio

● Improved efficiency for high pT > 15 GeV 
● Higher fake rate for low pT < 15 GeV at high µ 
● Higher duplication rate for µ = 0 

 → More seeds? 
● Lower reconstruction efficiency at low pT with high µ 

 Bucket size? Metric?→
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More seeds with hashing even after 
removing identical ones  Why? →

seedfinderConfigArg = SeedfinderConfigArg(
            r=(None, 200 * u.mm),  # rMin=default, 33mm
            deltaR=(1 * u.mm, 60 * u.mm),
            collisionRegion=(-250 * u.mm, 250 * u.mm),
            z=(-2000 * u.mm, 2000 * u.mm),
            maxSeedsPerSpM=1,
            sigmaScattering=50,
            radLengthPerSeed=0.1,
            minPt=500 * u.MeV,
            bFieldInZ=1.99724 * u.T,
            impactMax=3 * u.mm,
        )
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Metric issue?

1. Metric not adapted to low pT:
Mixed hits of several tracks in the same 
bucket 

 → Need to improve the metric

2. Possible improvement: 
Increase bucket size to contain a full track 
even at low pT

We tested.. 
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Impact of the bucket size 

Bucket size  = 50
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CPU time (no hashing)

Complexity:
• Space Point Maker is linear
• Seeding: worst case O(n³)

     observed ~O(n²)
• Track Finding is combinatorial O(n!)

and linear with the number of seeds

Reference
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CPU time with hashing

Mean seeding time per bucket (size = 20): 0.9 ms (constant with µ)

N Space Points→N Buckets
  (we need something more clever...)

Hashing/Reference ratioHashing
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Summary

• Implementation of Annoy in ACTS
• We can compare performances with and 

without Annoy
• First observations with hashing: 

– Speed is dominated by the seeding
– Physics performance get worst at low pT 

with increasing µ
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Issues with the sequencer

• One sequencer ; each event has a different number of 
Space Points →  number of buckets →  number of 
seeding needed

→ have to find the maximal number of buckets among 
the events

• Was not able to run a sequencer until hashing and 

rerun the same after adding the remaining algorithm → 
had to run a copy

• Was not able to run the seeding in parallel
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Outlooks  

• Seeding parallelization in ACTS to be worked on
• Ambiguity resolver not implemented yet in ACTS  

– cannot compare duplicate rates
– cannot do a full parallelization

• Need ML optimization (bucket size, new metric)
• Metric learning from data or simulated MC samples?
• Replace Annoy by a “novel” Neural Network 
architecture (Transformers?) 

QUESTIONS? 
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