
1

Tracking with Hashing in ACTS

Jeremy Couthures

M2 internship at LAPP, Annecy
Supervised by Jessica Levêque and Sabine

Elles

2

The Hashing step

Track finding suffers from combinatorial issue:
Try to expand each seed with the remaining Space Points

 → Two speed up approaches:
● Reduce the number of seeds (linear)
● Reduce the number of remaining Space Points (combinatorial)

Introduction of the hashing step:
1. Groups space points into buckets
2. Seeding is done separately on each bucket to reduce the number of seeds
fed to the TrackFinding Algorithm

● Method previously investigated by Sabrina Amrouche
● My internship goal: import the hashing step with the Annoy algorithm into ACTS

and investigate performance with the full tracking chain

https://indico.cern.ch/event/808288/contributions/3398590/attachments/1831775/3000028/AltEFTrackingForum_Hashing.pdf

3

Evaluation of performance

Physics: (CKF performances)

• efficiency =

• fake rate =

• duplication rate =

Computing:
• Monitoring of CPU time (sequencer)

4

Approaches

Full parallelization:

● Hashing creates small
groups of Space Points
(=buckets)

● Seeding and tracking are
applied on each bucket

 → small number of seeds
and possible expand
combinations per bucket

● Putting the tracks back
together,

● And remove duplicates

PlannedActual

Space Points
building

Seeding

Simulation

Track finding

Ambiguity
resolver

SeedingSeedingSeeding

Hashing

Concat Tracks

Track
finding

Track
finding

Track
finding

Ambiguity
resolver

5

Approaches

PlannedActual

Space Points
building

Seeding

Simulation

Track finding

Ambiguity
resolver

SeedingSeedingSeeding

Hashing

Concat Tracks

Track
finding

Track
finding

Track
finding

Ambiguity
resolver

• No Ambiguity resolver yet
→ cannot remove duplicated
tracks
→ cannot estimate the impact
of duplication rate on total
running time

6

Approaches

PlannedActual

Space Points
building

Seeding

Simulation

Track finding

Ambiguity
resolver

SeedingSeedingSeeding

Hashing

Concat Tracks

Track
finding

Track
finding

Track
finding

Ambiguity
resolver

SeedingSeedingSeeding

Hashing

Merge Seeds
(remove identicals)

Track finding

Ambiguity
resolver

• Seeding parallelization:

● Less seeds per bucket

● Expected to loose time on
merging

7

Approximate Nearest Neighbors Oh Yeah (Annoy)
k Nearest Neighbors Machine Learning Algorithm
→ need to define a distance, hence a metric
relevant for our problem

• Angular metric: (see next slides)
• Features: x, y
• Parameter: number of neighbors in a bucket (set

to 20 here)

Hashing algorithm

https://github.com/spotify/annoy

8

Annoy training

Space separation Corresponding binary tree

Takes two
random points
iteratively

9

Annoy query

• Annoy tuning parameters: number of
neighbors, number of trees, metric used,
features used, number of subspace to look at

Approximation

Merge neighbor subspaces Union of trees’ subspace

10

Metric definition

● Projection of a track on a circle
● Bucket: the nearest points on that circle

 → High pT track ~ linear track: all the hits are
expected to fall in the same bucket

 → Low pT tracks at high µ:
Buckets may contain mixed hits from several
tracks Bad seeds?→

11

Physics performances (no hashing)
Reference

5000 tt
events

generic
detector

12

Physics performances with hashing

Bucket size = 20 (default)

13

Physics performance ratio

● Improved efficiency for high pT > 15 GeV
● Higher fake rate for low pT < 15 GeV at high µ
● Higher duplication rate for µ = 0

 → More seeds?
● Lower reconstruction efficiency at low pT with high µ

 Bucket size? Metric?→

14

More seeds with hashing even after
removing identical ones Why? →

seedfinderConfigArg = SeedfinderConfigArg(
 r=(None, 200 * u.mm), # rMin=default, 33mm
 deltaR=(1 * u.mm, 60 * u.mm),
 collisionRegion=(-250 * u.mm, 250 * u.mm),
 z=(-2000 * u.mm, 2000 * u.mm),
 maxSeedsPerSpM=1,
 sigmaScattering=50,
 radLengthPerSeed=0.1,
 minPt=500 * u.MeV,
 bFieldInZ=1.99724 * u.T,
 impactMax=3 * u.mm,
)

15

Metric issue?

1. Metric not adapted to low pT:
Mixed hits of several tracks in the same
bucket

 → Need to improve the metric

2. Possible improvement:
Increase bucket size to contain a full track
even at low pT

We tested..

16

Impact of the bucket size

Bucket size = 50

17

CPU time (no hashing)

Complexity:
• Space Point Maker is linear
• Seeding: worst case O(n³)

 observed ~O(n²)
• Track Finding is combinatorial O(n!)

and linear with the number of seeds

Reference

18

CPU time with hashing

Mean seeding time per bucket (size = 20): 0.9 ms (constant with µ)

N Space Points→N Buckets
 (we need something more clever...)

Hashing/Reference ratioHashing

19

Summary

• Implementation of Annoy in ACTS
• We can compare performances with and

without Annoy
• First observations with hashing:

– Speed is dominated by the seeding
– Physics performance get worst at low pT

with increasing µ

20

Issues with the sequencer

• One sequencer ; each event has a different number of
Space Points → number of buckets → number of
seeding needed

→ have to find the maximal number of buckets among
the events

• Was not able to run a sequencer until hashing and

rerun the same after adding the remaining algorithm →
had to run a copy

• Was not able to run the seeding in parallel

21

Outlooks

• Seeding parallelization in ACTS to be worked on
• Ambiguity resolver not implemented yet in ACTS

– cannot compare duplicate rates
– cannot do a full parallelization

• Need ML optimization (bucket size, new metric)
• Metric learning from data or simulated MC samples?
• Replace Annoy by a “novel” Neural Network
architecture (Transformers?)

QUESTIONS?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21

