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The Hashing step

Track finding suffers from combinatorial issue:
Try to expand each seed with the remaining Space Points

—> Two speed up approaches:

* Reduce the number of seeds (linear)
* Reduce the number of remaining Space Points (combinatorial)

Introduction of the hashing step:
1. Groups space points into buckets
2. Seeding is done separately on each bucket to reduce the number of seeds
fed to the TrackFinding Algorithm

* Method previously investigated by Sabrina Amrouche
* My internship goal: import the hashing step with the Annoy algorithm into ACTS
and investigate performance with the full tracking chain
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https://indico.cern.ch/event/808288/contributions/3398590/attachments/1831775/3000028/AltEFTrackingForum_Hashing.pdf

Evaluation of performance

Physics: (CKF performances)

# tracks matched to a truth particle

 efficiency = # reconstructible particles ( > 1GeV, > 9 hits)
. fake rate = # tracks not matched
# reconstructed tracks

# reconstructible particles with > 1 track match
#reconstructible particles ( > 1GeV, > 9 hits)

* duplication rate =

Computing:
* Monitoring of CPU time (sequencer)
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Simulation ApprOaCheS

Space Points
building
Actual Planned Full parallelization:

* Hashing creates small
groups of Space Points
(=buckets)

* Seeding and tracking are
applied on each bucket

Seeding Hashing

Seeding Seeding Seeding

Track finding — small number of seeds

and possible expand
combinations per bucket

* Putting the tracks back

Ambiguity together,

resolver :
* And remove duplicates
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Approaches

No Ambiguity resolver yet
— cannot remove duplicated
tracks

— cannot estimate the impact
of duplication rate on total
running time
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Approaches

* Seeding parallelization:
* Less seeds per bucket

* Expected to loose time on
merging



Hashing algorithm

Approximate Nearest Neighbors Oh Yeah (Annoy)
K Nearest Neighbors Machine Learning Algorithm

— need to define a distance, hence a metric
relevant for our problem

* Angular metric: (see next slides)
* Features: x,y

« Parameter: number of neighbors in a bucket (set
to 20 here)
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https://github.com/spotify/annoy

Annoy training

Space separation Corresponding binary tree

Takes two /

random points

iteratively
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Annoy query

Merge neighbor subspaces Union of trees’ subspace

* Annoy tuning parameters: number of
neighbors, number of trees, metric used,
features used, number of subspace to look at
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Metric definition

S = arc length

Metric used : anqular distance

6=S/R

where S = distance travelled and R = radius of the circle /

TR * Projection of a track on a circle
/ o Vi

] I ’7?’_,::: * Bucket: the nearest points on that circle

— High pT track ~ linear track: all the hits are
expected to fall in the same bucket

— Low pT tracks at high p:
Buckets may contain mixed hits from several
tracks — Bad seeds?




Physics performances (no hashing)

Tracking efficiency
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Physics performances with hashing

Tracking efficiency

Efficiency
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Physics performance ratio

L Tracking efﬂuency ratio Tracking fake rate ratio Duplication rate ratio
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* Improved efficiency for high pT > 15 GeV
* Higher fake rate for low pT < 15 GeV at high p
* Higher duplication rate for y=0
— More seeds?
* Lower reconstruction efficiency at low pT with high p
— Bucket size? Metric?
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More seeds with hashing even after

removing identical ones — Why?

seedfinderConfigArg = SeedfinderConfigArg(
r=(None, 200 * u.mm), # rMin=default, 33mm
deltaR=(1 * u.mm, 60 * u.mm),
collisionRegion=(-250 * u.mm, 250 * u.mm),
z=(-2000 * u.mm, 2000 * u.mm),
maxSeedsPerSpM=1,
sigmaScattering=50,
radLengthPerSeed=0.1,
minPt=500 * u.MeV,
bFieldInZ=1.99724 * u.T,
impactMax=3 * u.mm,
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Metric issue?

1. Metric not adapted to low pT:

Mixed hits of several tracks in the same
bucket

— Need to improve the metric

2. Possible improvement:
Increase bucket size to contain a full track

even at low pT

We tested..




Impact of the bucket size

Bucket size =50
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running time/fevent (s)

10 5
1 =% =100 total: 3724 ms /

CPU time (no hashing)

Reference
time per event

! = p=o0total: 114 ms

—&— p =50 total: 1397 ms /h

CompIeX|ty
Space Point Maker is linear
* Seeding: worst case O(n?)
observed ~O(n?)
* Track Finding is combinatorial O(n!)
and linear with the number of seeds




running time/event (s)

CPU time with hashing

Hashing Hashing/Reference ratio

time per event
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N Space Points — N Buckets ™
(we need something more clever...)

Mean seeding time per bucket (size = 20): 0.9 ms (constant with p)




Summary

* Implementation of Annoy in ACTS
* We can compare performances with and
without Annoy

* First observations with hashing:
— Speed is dominated by the seeding
— Physics performance get worst at low pT
with increasing [

ﬁ



Issues with the sequencer

* One sequencer ; each event has a different number of
Space Points — number of buckets — number of
seeding needed

— have to find the maximal number of buckets among
the events

* Was not able to run a sequencer until hashing and

rerun the same after adding the remaining algorithm —
had to run a copy

* Was not able to run the seeding in parallel

ﬁ



« Seeding parallelization in ACTS to be worked on

« Ambiguity resolver not implemented yet In ACTS
— cannot compare duplicate rates

— cannot do a full parallelization

* Need ML optimization (bucket size, new metric)
* Metric learning from data or simulated MC samples?

* Replace Annoy by a "novel” Neural Network
architecture (Transformers?)

QUESTIONS?

ﬁ
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