
23/09/2022, 10:55 acts_logo_grey.svg

file:///Users/salzburg/Desktop/acts_logo_grey.svg 1/1

tsa
A. Salzburger (CERN) for the ACTS project

@SaltyBurger

supported by

cooperations

Getting Started
1

2

Getting started with the Core library

Core

R&D1 R&D2

CPU multi-threaded library of
tracking reconstruction components

acts-parallelization@cern.ch acts-machinelearning@cern.ch

acts-developers@cern.ch

CPU/GPU “single source” demonstrator
re-implementing the main Core chain

Machine learning and ML assisted
modules for track reconstruction

mailto:acts-parallelization@cern.ch
mailto:acts-machinelearning@cern.ch
mailto:acts-developers@cern.ch

3

Getting started with the Core library

Core

CPU multi-threaded library of
tracking reconstruction components

acts-developers@cern.ch

Core Fatras Plugins Examples

Library code Fast simulation Plugin code Examples

mailto:acts-developers@cern.ch

4

Getting started with the Core library

Core

CPU multi-threaded library of
tracking reconstruction components

acts-developers@cern.ch

Core Fatras Plugins Examples

Library code Fast simulation Plugin code Examples

Dependencies Eigen

BOOST Geant4

ROOT

Pythia8, HepMC

Geant4

DD4hep, EDM4hep, PODIO

mailto:acts-developers@cern.ch

5

Getting started with the Core library: externals & building

Several options to work with ACTS
- build from externals and ACTS from

scratch
- Build externals
- Build ACTS

- Use LCG or User container
https://acts.readthedocs.io/en/latest/
getting_started.html

http://www.apple.com/uk
https://codimd.web.cern.ch/s/5MPM6hrxk
https://acts.readthedocs.io/en/latest/getting_started.html
https://acts.readthedocs.io/en/latest/getting_started.html

6

Example framework: a playground - and not more

The example framework shipped with ACTS provides a showroom
- Event Data Model

- A convenient container class (a candidate for being promoted to Core)
- Simulated Hits (borrowed from ActsFatras)
- Particles (same)
- Measurement & track representation (from ActsCore)

- Framework
- Sequencer & Algorithm interface
- WhiteBoard for transient data transfer
- I/O Functionality
- Services

- Algorithms
- Some sample algorithms

- Python
- Python bindings

- Detectors
- several detector examples

7

Example framework: the Sequencer

 Sequencer(const Config& cfg);

 /// Add a service to the set of services.
 ///
 /// @throws std::invalid_argument if the service is NULL.
 void addService(std::shared_ptr<IService> service);
 /// Add a context decorator to the set of context decorators.
 ///
 /// @throws std::invalid_argument if the decorator is NULL.
 void addContextDecorator(std::shared_ptr<IContextDecorator> decorator);
 /// Add a reader to the set of readers.
 ///
 /// @throws std::invalid_argument if the reader is NULL.
 void addReader(std::shared_ptr<IReader> reader);
 /// Append an algorithm to the sequence of algorithms.
 ///
 /// @throws std::invalid_argument if the algorithm is NULL.
 void addAlgorithm(std::shared_ptr<IAlgorithm> algorithm);
 /// Add a writer to the set of writers.
 ///
 /// @throws std::invalid_argument if the writer is NULL.
 void addWriter(std::shared_ptr<IWriter> writer);

Event parallel (using tbb) algorithm chain executor:

Per event context attaching 
(e.g. alignment)

Job services, e.g. random numbers

Per event (pre-algorithms)  
input reading*

Per event algorithm chain*

Per event (post-algorithms)*

output writing

*readers, algorithms, writers are executed in the order in which they are added

8

Example framework: the WhiteBoard

Per-event store for reading writing event data

 /// Store an object on the white board and transfer ownership.
 ///
 /// @param name Non-empty identifier to store it under
 /// @param object Movable reference to the transferable object
 /// @throws std::invalid_argument on empty or duplicate name
 template <typename T>
 void add(const std::string& name, T&& object);

 /// Get access to a stored object.
 ///
 /// @param[in] name Identifier for the object
 /// @return reference to the stored object
 /// @throws std::out_of_range if no object is stored under the requested name
 template <typename T>
 const T& get(const std::string& name) const;

 bool exists(const std::string& name) const;

Getting data from event store

Adding data to the event store  
(readers e.g. fetch data from I/O 
and add them to the event store)

9

Step1: adding a user algorithm

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm

This adds a simple user algorithm
which prints out some chosen/configured
message

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm

10

Step 2: create python binding
 (and runnable script)

This adds python bindings to for the user
algorithm and a runnable script

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings

11

Step 2: create python binding
 (and runnable script)

This adds python bindings to for the user
algorithm and a runnable script

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings

salzburg@andimacbookprom1 python % python3 <path_to_source>/acts-ws/Examples/Scripts/Python/tutorial.py
22:37:14 Sequencer INFO Create Sequencer (single-threaded)
22:37:14 Sequencer INFO Added algorithm 'UserAlgorithm'
22:37:14 Sequencer INFO Processing events [0, 3)
22:37:14 Sequencer INFO Starting event loop with 1 threads
22:37:14 Sequencer INFO 0 services
22:37:14 Sequencer INFO 0 context decorators
22:37:14 Sequencer INFO 0 readers
22:37:14 Sequencer INFO 1 algorithms
22:37:14 Sequencer INFO 0 writers
22:37:14 UserAlgorith INFO Hello ACTS workshop!
22:37:14 Sequencer INFO finished event 0
22:37:14 UserAlgorith INFO Hello ACTS workshop!
22:37:14 Sequencer INFO finished event 1
22:37:14 UserAlgorith INFO Hello ACTS workshop!
22:37:14 Sequencer INFO finished event 2
22:37:14 Sequencer INFO Processed 3 events in 33.541000 us (wall clock)
22:37:14 Sequencer INFO Average time per event: 2.000000 us/event

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings

12

Step 3: embed the algorithm in another example

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings-embedded

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings-embedded

13

Step 3: embed the algorithm in another example

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings-embedded

22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 89
22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 90
22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 91
22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 92
22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 93
22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 94
22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 95
22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 96
22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 97
22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 98
22:47:32 UserAlgorith INFO User Algorithm embedded in Propagation example.
22:47:32 Sequencer INFO finished event 99
22:47:32 Sequencer INFO Processed 100 events in 2.356004 s (wall clock)
22:47:32 Sequencer INFO Average time per event: 23.429318 ms/event

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings-embedded

14

Step 3: embed the algorithm in another example

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings-embedded

Creates an output root file

Change to False here for 
a non-empty root file

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings-embedded

15

Step 4: connect the algorithms

Retrieve the output of 
the previous algorithm 

from the event-contextual

WhiteBoard.

Do some fancy stuff with it.

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings-embedded-connected

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings-embedded-connected

16

Step 4: connect the algorithms

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings-embedded-connected

23:20:58 Sequencer INFO finished event 92
23:20:58 UserAlgorith INFO User Algorithm embedded in Propagation example.
23:20:58 UserAlgorith INFO Successfully retrieved 1000 propgation_step collections with 40086 steps in total.
23:20:58 Sequencer INFO finished event 93
23:20:58 UserAlgorith INFO User Algorithm embedded in Propagation example.
23:20:58 UserAlgorith INFO Successfully retrieved 1000 propgation_step collections with 40568 steps in total.
23:20:58 Sequencer INFO finished event 94
23:20:58 UserAlgorith INFO User Algorithm embedded in Propagation example.
23:20:58 UserAlgorith INFO Successfully retrieved 1000 propgation_step collections with 40539 steps in total.
23:20:58 Sequencer INFO finished event 95
23:20:58 UserAlgorith INFO User Algorithm embedded in Propagation example.
23:20:58 UserAlgorith INFO Successfully retrieved 1000 propgation_step collections with 40652 steps in total.
23:20:58 Sequencer INFO finished event 96
23:20:58 UserAlgorith INFO User Algorithm embedded in Propagation example.
23:20:58 UserAlgorith INFO Successfully retrieved 1000 propgation_step collections with 40180 steps in total.
23:20:58 Sequencer INFO finished event 97
23:20:58 UserAlgorith INFO User Algorithm embedded in Propagation example.
23:20:58 UserAlgorith INFO Successfully retrieved 1000 propgation_step collections with 40479 steps in total.
23:20:58 Sequencer INFO finished event 98
23:20:58 UserAlgorith INFO User Algorithm embedded in Propagation example.
23:20:58 UserAlgorith INFO Successfully retrieved 1000 propgation_step collections with 41002 steps in total.
23:20:58 Sequencer INFO finished event 99
23:20:58 Sequencer INFO Processed 100 events in 5.682119 s (wall clock)
23:20:58 Sequencer INFO Average time per event: 55.849365 ms/event

https://github.com/asalzburger/acts/tree/ws-add-user-algorithm-python-bindings-embedded-connected

