EP-R&D D)

* Federal Ministry
A of Education Programme on Technologies for Future Experiments >

and Research

2022 ACTS Workshop

detray - tutorial

Joana Niermann

28.09.2022

Build the Project

Tutorial repository:

git clone https://github.com/beomki-yeo/detray_tutorial.git
cd detray_tutorial

mkdir build

cd build/

cmake ../ -DCMAKE_BUILD_TYPE=Release

make

6 P B BH BH P

Run executables (detray testing is also available):

CUDA propagation
$./bin/detray_tutorial_propagator_cuda

The detray minimal build:

$ git clone https://github.com/acts-project/detray.git
$ cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -S detray -B detray-build
$ cmake --build detray-build

Lots of configuration options:

DETRAY_CUSTOM_SCALARTYPE

algebra-plugins, e.g. DETRAY_EIGEN_PLUGIN

DETRAY_BUILD_CUDA

How to set up externals (e.g fetch them or pick up local installation)

The detray Project 2022 ACTS Work:

Define a Detector

A detector type is defined by metadata:

struct telescope_metadata {

// Define links to types

enum mask_ids : unsigned int {
e_rectangle2 = 0,
e_unbounded_plane2 = 1,
};
enum material_ids : unsigned int {
e_slab = 0,
}s
using transform_store = static_transform_store<vector_t>;
using material_definitions = tuple_vector_registry<material_ids, slab>;

template <...>

using surface_finder = surfaces_finder<...>;
};
struct detector_registry {
using default_detector = full_metadata<volume_stats, 1>;
using toy_detector = toy_metadata;
using telescope_detector = telescope_metadata;

};

See: tests/common/include/tests/common/tools/detector_metadata.hpp

Build a Detector

With the detector component types defined, build your detector, e.g.:

® Build volumes/gap volumes from boundary surfaces

® Set the linking between the portals

® Define module surface factories to fill the volumes (using containers that mirror the underlying detector containers to

keep everything sorted correctly).

® Insert the per-volume containers to the detector's add_objects_per_volume(...) function.

® Example: tests/common/include/tests/common/tools/create_toy_geometry.hpp

. Ol

=

set up a predefined detector:

® Toy Detector: Models the ACTS generic detector’s pixel detector

® Telescope Detector: Construct a number of rectangular surfaces at predefined positions or along a pilot track.

Warning: There are some pitfalls with this detector and it is not as well tested as the toy detector.

constexpr std::size_t n_brl_layers{4}; // up to 4 barrel layers
constexpr std::size_t n_edc_layers{3}; // up to 7 endacap layers
vecmem::host_memory_resource host_mr;

auto det = create_toy_geometry(host_mr, n_brl_layers, n_edc_layers);

Toy Detector - The TML Pixel Detector

Toy Detector

® Implement a small geometry, independent from io module

® All links are manually checked for consistency

The toy detector contains:

® A beampipe (r = 27 mm)

® An inner layer (fynin = 27 mm, fpax = 38 mm) with 224 pixel module surfaces
® A gap volume (fmin = 38 mm, rmax = 64 mm)

® An outer layer (fpin = 64 mm, rmax = 80 mm) with 448 pixel module surfaces

® Add grid will be added for local navigation.

= Provides a reliable, dynamically generated geometry that can be used for testing and rapid development.

= Complexity (number of barrel and endcap layers) can be configured for easier debugging.

The detray Project 2022 ACTS Work:

Geometry Validation

Ray Scan

® Shoot straight line ray/helix through detector setup

® Record every intersection, together with associated
volume index.

® Sort by distance and check for consistent crossing of
adjacent portals.

// Iterate through uniformly distributed momentum directions
for (const auto ray
uniform_track_generator <detail::ray>(theta_steps, phi_steps, ori)) {
// Shoot ray through the detector and record all surfaces it encounters
const auto intersection_record = particle_gun::shoot_particle(det, ray); /7)

// Create a trace of the volume indices that were encountered

dindex start_index{0};
auto [portal_trace, surface_trace] = trace_intersections(intersection_record, start_index);

// Check correct portal linking
is_consisten_linking &= check_connectivity(portal_trace);

Display the Portal Linking as a Graph

Geometry Linking Validation

® Compare ray scan with geometry linking graph.

® Provides a coarse, but automated check of geometric setup.

«——» portal

O surfaces
O volume

The detray Project 2022 ACTS Workshop

Display the Portal

Linking as a Graph

Build and display the volume graph:

// Build graph from

detector

volume_graph graph(det);

std::cout << graph.to_string() << std::endl;

const auto &adj_mat
// auto geo_checker

= graph.adjacency_matrix ();
= hash_tree(adj_mat); Still WIP...

[...1
[>>] Node with index 1
-> edges:

-> 0

-> 1

-> 2

-> leaving world
[>>] Node with index 2
-> edges:

-> 0

-> 1

-> 3

-> leaving world

The detray Project

(108x)

(2x)

2022 ACTS Work:

Geometry Validation

Navigation Validation

® Shoot ray/helix, but this time follow with navigator.

® Compare the entire intersection trace with the objects encountered by navigator.

using inspector_t = aggregate_inspector<object_tracer_t, print_inspector>;
using navigator_t = navigator<decltype(det), inspector_t>;
[...1]

for (auto track

uniform_track_generator<free_track_parameters>(theta_steps, phi_steps, ori, p_mag)) {

// Get ground truth helix from track
detail::helix helix(track, &B);

// Record all surface-helix intersections
const auto intersection_record = particle_gun::shoot_particle(det, helix);

// Now follow that helix with the same track
propagator_t::state propagation(track);
// Get navigator object trace

auto &inspector = propagation._navigation.inspector();
auto &obj_tracer = inspector.template get<object_tracer_t>();
auto &debug_printer = inspector.template get<print_inspector>();

prop.propagate (propagation);
std::cout << debug_printer.to_string();

The detray Actor Model

// initialize the navigation
navigator.init (propagation);

What is an actor in detray? // Run while there is a heartbeat
while (propagation.heartbeat) {

® C(Callable that performs a task after
every step. // Take the step

t .st ti H
® Has a per track state, where results stepper.step (propagation);

b d.
can be passe // And check the status

® Can be plugged in at compile time. navigator.update (propagation);

® |n detray: Aborters are actors
// Run all registered actors

run_actors (propagation.actor_states, propagation);

Implementation

® Actors can 'observe’ other actors, i.e. additionally act on their subject’s state.
® Observing actors can be observed by other actors and so forth (resolved at compile time!).

® Observer is being handed subject’s state by actor chain
= no need to know subject’s state type and fetch it.

= Currently implemented: Navigation policies, pathlimit aborter, propagator inspectors.

Define your own Actor

What is an actor in detray?

struct actor {
/// Tag whether this is a composite

® Inherit from detray: :actor X X
struct is_comp_actor : public std::false_type {};
® |mplement an actor state, if needed /// Defines the actors state
® Implement the call operator struct state {};
(overloads) };
struct print_actor : detray::actor {

struct state {

1

/// Actor implementation

template <typename propagator_state_t>

void operator () (state &printer_state, const propagator_state_t & /*p_statex*/) const {
// print something

}

/// Observing actor implementation
template <typename subj_state_t, typename propagator_state_t>
void operator () (state &printer_state, const subj_state_t &subject_state,
const propagator_state_t & /*p_state*/) const {
// print something from the subject’s state

Full Chain

Assemble a Propagation Flow

® Define B-Field (currently only homogeneous)
® Step-size constraints
® Navigation Policies: stepper_default_policy, always_init

® Additional inspectors run in actor chain

Propagation type definitions

// Define navigator, stepper, actor chain and propagator

using navigator_t = navigator<decltype (det)>;

using b_field_t = constant_magnetic_field<>;

using track_t = free_track_parameters;

using constraints_t = constrained_step<>; // different step-size constr.
using policy_t = stepper_default_policy; // how to update the navigation

using stepper_t = rk_stepper<b_field_t, track_t, comnstraints_t, policy_t>;
using actor_chain_t =

actor_chain<dtuple, propagation::print_inspector, pathlimit_aborter>;
using propagator_t = propagator<stepper_t, navigator_t, actor_chain_t>;

Full Chain

Run track loop

constexpr scalar overstep_tol{-7. * unit_constants::um};
constexpr scalar step_constr{30 * unit_constants::cml};
constexpr scalar path_limit{60 * unit_constants::cm};

for (auto track
uniform_track_generator <track_t>(theta_steps, phi_steps, ori, p_mag)) {

track.set_overstep_tolerance (overstep_tol);

// Build actor states and tie them together
propagation::print_inspector::state print_insp_state{};
pathlimit_aborter::state pathlimit_aborter_state{path_limit};
actor_chain_t::state actor_states = std::tie(
print_insp_state, pathlimit_aborter_state);

// Init propagator state
propagator_t::state p_state(track, actor_states);

// Set step constraints (the most strict will be applied)
p_state._stepping
.template set_constraint<step::constraint::e_accuracy>(step_constr);

// Propagate the track
is_success &= p.propagate(p_state);

Detray Container Structure

In ACTS: Jagged memory layout of volumes containing layers (might be removed), containing surfaces.

Linking by Index

@ voume @8 Transform
® Volumes keep index ranges
into surface/portal @ Portal 0 Mask
containers. @ Ssurface (different types)

® Surfaces/Portals keep indices
into the transform and mask
containers.

® Portals link to adjacent
volume and next surfaces 000000 ...
finder (local grid).

® Surfaces link back to mother
volume.

= Only transforms and masks contain geometric data, all other classes are uniquely used for container indexing.

2022 ACTS Workshop

Actor Chain Implementation

Overview of actor implementation:

// Actor with observers
template <class actor_impl_t = actor,
typename... observers>
class composite_actor final
public actor_impl_t {
struct is_comp_actor : public std::true_type{};
// Implement this actor
using actor_type = actor_impl_t;
// Actor implementation + notify call
void operator () (...) comst { [...] notify(...);}

/// Base class actor implementation
struct actor {

/// Tag whether this is a composite
struct is_comp_actor
public std::false_type {};

/// Defines the actors state
struct state {};

3. private:
’ // Call all observers
void notify(...) comst {...}
Building a chain: Y
// Define types
using observer_lvll = composite_actor<dtuple, print_actor, example_actor_t, observer_lvl2>;
using chain = composite_actor<dtuple, example_actor_t, observer_1lvll>;

// Aggregate actor states to be able to pass them through the chain
auto actor_states = std::tie(example_actor_t::state, print_actor::state);

// Run the chain
actor_chain<dtuple, chain> run_chain{};
run_chain(actor_states, prop_state);

2022 ACTS Workshop

	The <detray> Project
	Appendix

