DEVELOPMENT OF HIGH-PERFORMANCE RECONSTRUCTION ALGORITHMS FOR DETECTING LONG-LIVED PARTICLES

Volodymyr Svintozelskyi
Taras Shevchenko National University of Kyiv

Mentor: Arantza Oyanguren (IFIC- University of Valencia/CSIC, Spain)
GPU-enhanced LHCb data acquisition system:

- x86 event building units
- 500 GPUs process HLT1
- Only events selected by HLT1 are sent to the x86 servers processing HLT2.
LHCb UPGRADE

Allen: A high level trigger on GPUs for LHCb:

- CUDA-based framework
- Implement HLT1 stage
- Process up to 40 Tbit/s data rate:
 - Reconstruction of charged particles trajectories
 - Finding collision points
 - Identifying particles as hadrons or muons
 - Finding the displaced decay vertices
LONG-LIVED PARTICLES

- Large fraction decays outside of VELO:
 - For $\Lambda_b \rightarrow \Lambda\gamma$:
 - 51% - hits UT & SciFi
 - 37% - hits SciFi only
 - Development of downstream track reconstruction within Allen framework is extremely important!

The objective of my project:

Contribution to this development
THANK YOU FOR YOUR ATTENTION

Volodymyr Svintozelskyi
volodymyrsvintozelskyi@gmail.com