30thAnniversary of the TERA Foundation

2008-2013: The seeds of the AVO-ADAM prototype at CERN and the challenge of high-gradient linacs

Alberto Degiovanni 15thSeptember 2022 CERN Council Chamber

How did my journey with TERA start?

Spring 2004: as a high-school student passionate about physics, I attended a conference on hadrontherapy by prof. Amaldi...

Outline:

- During this talk, **two main threads** related to linac studies and technology
- Apologies for all other projects happening during those years that due to time constraints may not be mentioned here (and will be covered in Fabio Sauli's talk)
- I apologize for not explicitly mention all the people that have contributed and helped during all those years! My gratitude to all of them!

From LIBO to LIGHT

- Updates and changes in the design, moving from a prototype to an industrial unit...
- Further improvements in the overall cell design and optimization

A typical RF module of LIGHT

A better understanding of LIGHT...

 In 2008-2009 fruitful discussions and lecture with P. Puggioni (ADAM) on the linac design and beam dynamics performance

ENERGY MODULATION PROBLEM

5

DAM LEC 3 - BD adv 1

A better understanding of LIGHT...

220

200

180

(VeV) 160

ше ад 140 -

120

100

Scaling laws

3.5

2.5

1.5

- Cavity geometry design
- Energy modulation and layout

1.5

Energy modulation with multiple tanks

• Additional work done in the understanding of the limits for energy modulation and on the linearity of the energy gain.

Results of the simulations

The following plots summarize the results of the simulations obtained by introducing **Field Amplitude factors** (x-axis) and **phase shifts** (y-axis) to the nominal design.

Some different design for different projects

The Cyclinac timeline until 2010

TERA

A possible cyclotron injector...

- A possible injector cyclotron was the TR24 (ACSI) as the one installed at IPHC in Strasbourg.
- In 2013 a collaboration started, and a measurement campaign was setup to characterize the beam transverse emittance
- A first visit at IPHC took place in April 2013, with all the TERA cyclinac team.

<u>A. Degiovanni et al.</u>, Emittance Measurements at the Strasbourg TR24 Cyclotron for the Addition of a 65 MeV Linac Booster, 329-31, CYC13 Proceedings

E. Bouquerel et al., Transverse beam emittance studies of the CYRCé TR24 cyclotron, NIM A, 2019

(a) The TR24 cyclotron.

(b) The external source.

From left to right: P. Magagnin, D. Bergesio, A. Lo Moro, S. Benedetti, U. Amaldi, A. Degiovanni, C. Cuccagna, V. Rizzoglio, A. Garonna

All-linacs and cyclinacs

1991: first "all-linac" approach to proton therapy

R. W. Hamm, K. R. Crandall and J. M. Potter, Preliminary design of a dedicated proton therapy linac, in *Proc. PAC90*, Vol. 4 (San Francisco, 1991), pp. 2583–2585.

1994: "cyclinac" approach to proton therapy

U. Amaldi, The Italian hadrontherapy project, in Hadron Therapy in Oncology, eds. U. Amaldi and B. Larsson (Elsevier, 1994), p. 45.

review paper

LIGHT journey up to the ADAM prototype

- TERA and ENEA supported ADAM from Dec2012 to Mar2013 in developing a proposal for a Protontherapy Linear Accelerator.
- Two options were considered: cyclinac and all-linac
- In 2014 with the creation of the CERN Medical Application office and the start of the high-frequency RFQ design from CERN, the all-linac option was chosen by AVO-ADAM.
- The CERN Point2 site was refurbished and used for installation of the LIGHT "demonstrator"...
- …eventually AVO-ADAM is now commissioning a full-scale 230 MeV LIGHT machine at STFC Daresbury!

12

LIGHT FIRST UNIT ADAM PROPOSAL FOR A PROTONTHERAPY LINEAR ACCELERATOR

2011-2012: IMPULSE project with PSI

 IMPULSE project: IMaging and intensity Modulation PULSEd energy booster

J. Bilbao de Mendizabal, **3 GHz linac booster design** from **250 MeV to 350 MeV for medical application at PSI**, MSc Thesis, University of Geneva, 2012

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 064701 (2018) Linac booster for high energy proton therapy and imaging Alberto Degiovanni^{*} and Ugo Amaldi Anthony J. Lomax, Jacobus M. Schippers, and Lukas Stingelin Javier Bilbao de Mendizabal[†]

CABOTO: CArbon BOoster for Therapy in Oncology (2008-2012)

• From 2009 to 2012 several designs:

- For the source (EBIS pulsed ion source)
- for the cyclotron (SC/isochronous)

CABOTO

Scopel: potenze salto InW.

• for the linac (at different frequencies)

Amalli' Degisveni - Gewome 3/9/08 <u>A. Degiovanni</u>, **High Frequency Linac for Carbon Ion Hadrontherapy**, MSc Thesis, University of Milan, 2009

 $\underline{A.~Garonna},$ Cyclotron Designs for Ion Beam Therapy with Cyclinacs, <code>PhD</code> Thesis, <code>EPFL</code>, 2011

<u>S. Verdù Andrès</u>, High-Gradient Accelerating Structure Studies and their Application in Hadrontherapy, PhD Thesis, Univ. of Valencia, 2013

<u>A. Garonna et al.</u>, Cyclinac medical accelerators using pulsed C6+/H2+ ion sources, J. Instr. 5 (2010) C09004

<u>S. Verdù Andrès et al.</u>, Feasibility Study of a High-Gradient Linac for Hadrontherapy, IPAC11 Proceedings, WEPS-045

TULIP: a TUrning LInac for Protontherapy

<u>A. Degiovanni</u>, **High gradient proton linacs for medical applications**, PhD Thesis, EPFL, 2014

<u>A. Degiovanni et al.</u>, **Design of a Fast-cycling High-gradient Rotating Linac for Proton Therapy**, IPAC13 Proceedings, THPWA-008

TULIP and proton tomo-therapy (or Arc therapy)

 In 2012-2013, in a collaboration with DKFZ, the option of using TULIP beams for Arc therapy was explored

Figure 4.1.3: Rotational dose delivery with TULIP. The static spot positions, shown in (a) are shifted during delivery for dynamic rotational delivery as indicated in (b). The 3° angular step between the static beam positions is marked.

Figure 4.2.4: Comparison of dose distributions for 3D spot scanning and dynamic rotational delivery. Rotational delivery results in a detrimental dose bath to normal tissue.

High-gradient test program: the problem of the nose!

- For hadron linacs E_{max}/E_{acc} ~ 4-5, while in electron linac is ~ 2
- The CLIC goal of E_{acc} = 100 MV/m corresponds to 40 MV/m in medical hadron linacs!
- What are the limits on Eacc? How does this scale with frequency?

<u>R. Bonomi</u>, Thermo-structural study and experimental analysis of accelerating structures for hadrontherapy linacs, PhD Thesis, Politecnico di Torino, 2011

<u>A. Degiovanni et al.</u>, TERA high gradient test program of RF cavities for medical linear accelerators, NIM A 657 (2011) 55 - 58

<u>S. Verdú-Andrés et al.</u>, **High-power test results of a 3 GHz single-cell cavity**, arXiv:1206.1930v2, (2012)

<u>S. Verdú-Andrés et al.</u>, **High Gradient Test of a 3 GHz single-cell Cavity**, LINAC10 Proceedings, THP-037

Back: R. Bonomi, U. Amaldi, A. Garonna, D. Campo, R. Wegner Front: A. Degiovanni, S. Verdù Andrès, M. Garlaschè

17

 $S_c = \operatorname{Re}(\mathbf{S}) + \frac{1}{c}\operatorname{Im}(\mathbf{S})$

New local field quantity describing the high gradient limit of accelerating structures

A. Grudiev, S. Calatroni, and W. Wuensch

Phys. Rev. ST Accel. Beams 12, 102001 – Published 26 October 2009; Erratum Phys. Rev. ST Accel. Beams 14, 099902 (2011)

After many iterations, the cavity specs (S- and C-band)

2998.5	Frequency [MHz]	5712
18.9	Cell length [mm]	18.8
84	Shunt imp [M Ω/m]	150
8990	expected Q value	8990
360	Peak power [kW] *	200
6.48	E _{max} /E ₀	4.63
2.66	H _{max} /E ₀ [A/kV]	2.80
29 10 ⁻³	√S _c /E ₀ [√W/V]	25 10 ⁻³
260	E _{max} [MV/m] *	185
1.38	S _{c,max} [MW/mm ²] *	1.03

* Values for specified E_{max} ** second C-band cavity

¹⁸ TERA

After many iterations, the cavity specs (S- and C-band)

* Values for specified E_{max}

** second C-band cavity

S-band high gradient tests: production and tuning (2009-2010)

S-band high gradient tests: low power and high power (2010-2012)

Indirect measurements of field through Faraday Cup

High Power Test (@CTF3 Gallery – Feb 2010)

Preliminary results compared with CLIC Model

S-band high gradient tests: post mortem analysis

TER

C-band high gradient tests: machining and tuning

C-band high gradient tests: high power tests at Ponit2

Normal pulse

Limits on gradients and scaling laws

	S-band	C-band	X-band*
Cell shape	Arss = 2.0.4 mm ² - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Ages 3.2 cmm ²	Ares = 24.7 mm ²
BDR ~ t ^y , y =	2.9 ± 0.5	4.9 ± 1.2	5 ± 1
BDR ~ E ^x , x =	16 ± 5	35 ± 11	28 ± 8
ΔV [nm³] (stress model fit)	1300 ± 600	80 ± 30	40 – 1100
Scaled VSc [(W/μm ²) ^{0.5}] for BDR 10 ⁻⁶ m ⁻¹ , 200 ns	1.6	1.9	1.2 - 2.4

*Dolgashev et al., EPAC08, 742-44

Limits on gradients and scaling laws

An alternative to CCLs: BTW structures development

- A CLIC-TERA collaboration

 funded by CERN-KT, starting in 2012
- 20 cm long
- Max gradient of more than 50 MV/m!
- 10 MeV energy gain from this structure (with peak power ~22 MW)

→ More in the next talk from Stefano Benedetti

Power transmission with RF rotating joints designed by CLIC

CLIC - Note - 1071 DESIGN AND HIGH POWER MEASUREMENTS OF A 3 GHZ ROTARY JOINT FOR MEDICAL APPLICATIONS

Figure 6: Setup of the high power test of the RJ in CTF2 at CERN.

... from cyclinac to all-linac designs

"...Physics is beautiful and useful !"

"Ideas and projects move on the legs of people..."

Thank you for your attention !

