

Speeding up SM Amplitude Calculations with Chirality Flow

MCNET MEETING 2022 23 SEPTEMBER 2022 - ANDREW LIFSON

BASED ON HEP-PH:2003.05877 (EPJC), HEP-PH:2011.10075 (EPJC), AND HEP-PH:2203.13618 (EPJC)

IN COLLABORATION WITH JOAKIM ALNEFJORD, CHRISTIAN REUSCHLE, MALIN SJÖDAHL, AND ZENNY WETTERSTEN

Colour flow reminder

Massless OCD

Introduction

- Spinor-helicity recap
- Colour flow reminder.
- Chirality Flow
 - Massless QED
 - Massless QCD
 - Massive Particles
- Automation
 - Aim and method
 - Results
- 4 Conclusions

Our Main Analytical Result

Introduction

Colour flow remind

Chirolity Ele

Massless QCD

Automation

Aim and method Results

Conclusions

10-particle Feynman Diagram calculated in single slide

$$\underbrace{\frac{1}{[8r_8]\langle r_99\rangle}}_{\text{polarization vectors}} [15]\langle 64\rangle [10 9]$$

$$\times \left(\langle r_9 9 \rangle [9r_8] + \langle r_9 10 \rangle [10r_8] \right) \left(\underbrace{[33]}_{0} \langle 37 \rangle + [34] \langle 47 \rangle + [36] \langle 67 \rangle \right)$$

$$\times \Big(-\langle 89 \rangle [91] \langle 12 \rangle -\langle 89 \rangle [95] \langle 52 \rangle -\langle 8\,10 \rangle [10\,\,1] \langle 12 \rangle -\langle 8\,10 \rangle [10\,\,5] \langle 52 \rangle \Big)$$

Our Main Numerical Result (so far) (hep-ph:2203.13618)

Introduction

Colour flow reminde

Chirality Floy

Massless QCD

Automation

Aim and method Results

Conclusions

Spinor-Helicity: its Building Blocks

Spinor-helicity recap

Automation

UNIVERSITY

Lorentz algebra $so(3,1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality ~ helicity

Spinors (use chiral basis):
$$u^+(p) = v^-(p) = \begin{pmatrix} 0 \\ |p\rangle \end{pmatrix} \qquad u^-(p) = v^+(p) = \begin{pmatrix} |p] \\ 0 \end{pmatrix}$$
$$\bar{u}^+(p) = \bar{v}^-(p) = ([p| \quad 0) \qquad \bar{u}^-(p) = \bar{v}^+(p) = (0 \quad \langle p|)$$

■ Amplitude written in terms of Lorentz-invariant spinor inner products

$$\langle ij \rangle = -\langle ji \rangle \equiv \langle i||j \rangle$$
 and $[ij] = -[ji] \equiv [i||j]$

■ These are well known complex numbers, $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_i}$

Spinor-Helicity: Vectors and Removing μ Indices

Introduction

Spinor-helicity recap

Chirality Ele

Massless QED Massless QCD

Automation

Aim and method

Conclusions

Lorentz algebra $so(3,1) \cong su(2) \oplus su(2)$

Dirac matrices in chiral basis

$$\gamma^{\mu} = egin{pmatrix} 0 & \sqrt{2} au^{\mu} \ \sqrt{2}ar{ au}^{\mu} & 0 \end{pmatrix} \qquad \sqrt{2} au^{\mu} = (\mathsf{1},ec{\sigma}), \ \ \sqrt{2}ar{ au}^{\mu} = (\mathsf{1},-ec{\sigma}),$$

Remove vector indices with e.g.

$$\underbrace{\langle \textbf{\textit{i}} | \bar{\tau}^{\mu} | \textbf{\textit{j}}] [\textbf{\textit{k}} | \tau_{\mu} | \textbf{\textit{I}} \rangle = \langle \textbf{\textit{i}} | \lambda [\textbf{\textit{k}}]]}_{\text{Fierz identity}}, \qquad \underbrace{\sqrt{2} p^{\mu} \tau_{\mu} \equiv \cancel{p} = |p| \langle p|}_{\text{Contraction with Pauli}}$$

Polarisation vectors ($r \equiv$ gauge choice, $r^2 = 0$, $r \cdot p \neq 0$):

$$\notin_{+}(p,r) = \frac{|p]\langle r|}{\langle rp \rangle}, \qquad \qquad \notin_{-}(p,r) = \frac{|r]\langle p|}{[pr]}$$

Introduction

Spinor-helicity recap Colour flow reminder

Colour flow remine

Massless QED

Massive Particle

Automation Aim and method

Aim and metho

Conclusions

$e^{+} \xrightarrow{p_{2}} \xrightarrow{p_{3}} \gamma_{3}^{-}$ $\downarrow p_{4} \\ \downarrow p_{5} \\ \downarrow p_{5}$

- $|p\rangle \equiv$ right-chiral spinor
- $|p| \equiv |eft\text{-chiral spinor}$
- τ^{μ} , $\bar{\tau}^{\mu}$ ≡ Pauli matrices ■ $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_i}$

Spinor helicity: analytic

$$\sim \langle p_{1}|\bar{\tau}^{\mu}\underbrace{(|p_{1}]\langle p_{1}|+|p_{4}]\langle p_{4}|)}_{p_{1}+p_{4}}\bar{\tau}^{\nu}|p_{2}\underbrace{\frac{\langle r_{3}|\bar{\tau}_{\nu}|p_{3}]}{\langle r_{3}3\rangle}}_{\epsilon_{3}^{-}}\underbrace{\frac{[r_{4}|\tau_{\mu}|p_{4}\rangle}{[4r_{4}]}}_{[4r_{4}]}$$

$$= \frac{(\langle p_{1}|\bar{\tau}^{\mu}|p_{1}]+\langle p_{1}|\bar{\tau}^{\mu}|p_{4}])[r_{4}|\tau_{\mu}|p_{4}\rangle}{\langle r_{3}3\rangle[4r_{4}]}$$

$$= \frac{\langle 1r_{4}\rangle([41]\langle 13\rangle+[44]\langle 43\rangle)[r_{3}2]}{\langle r_{3}3\rangle[4r_{4}]} = \underbrace{\frac{\langle 1r_{4}\rangle([41]\langle 13\rangle[r_{3}2]}{\langle r_{3}3\rangle[4r_{4}]}}_{\text{Fierz identities like }\langle i|\bar{\tau}^{\mu}|j|[k|\tau_{\mu}|l\rangle=\langle ii\rangle[ki]}_{[ii]=0} = \underbrace{\frac{\langle 1r_{4}\rangle([41]\langle 13\rangle[r_{3}2]}{\langle r_{3}3\rangle[4r_{4}]}}_{[ii]=0}$$

Spinor-helicity recap Colour flow reminder

Colour flow reminor

Massless QEE Massless QCE

Massive Particles

Automation

Aim and method

Conclusion

- $|p\rangle\equiv$ right-chiral spinor
- $|p| \equiv \text{left-chiral spinor}$
- $au^{\mu}, ar{ au}^{\mu} \equiv ext{Pauli matrices}$
- lacksquare $\langle ij
 angle \sim [ij] \sim \sqrt{2 p_i \cdot p_j}$

Spinor helicity: explicit matrix multiplication

$$\sim \left[ar{u}^-(
ho_1)\gamma^\mu\epsilon^+_\mu(
ho_4)\left(
ho_1^
u+
ho_4^
u
ight)\gamma_
u\gamma^
ho\epsilon^-_
ho(
ho_3)v^+(
ho_2)
ight]$$

- Also cache and recycle various components
- Most common numerical method

- $|p\rangle \equiv$ right-chiral spinor
- $|p| \equiv |eft\text{-chiral spinor}$
- $au^{\mu}, ar{ au}^{\mu} \equiv ext{Pauli matrices}$
- lacksquare $\langle ij
 angle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$

Spinor helicity: explicit matrix multiplication

$$\sim \left[ar{u}^-(p_1)\gamma^\mu\epsilon^+_\mu(p_4)\left(p_1^
u+p_4^
u
ight)\gamma_
u\gamma^
ho\epsilon^-_
ho(p_3)v^+(p_2)
ight]$$

- Also cache and recycle various components
- Most common numerical method

Can we systematically remove need for algebra or matrix multiplication?

Spinor-helicity recap

Aim and method

Colour Flow: a Quick Introduction

Colour flow reminder

Automation

Standard method in SU(N)-colour calculations:

Write all objects in terms of $\delta_{i\bar{i}} \equiv$ flows of colour (for simplicity $T_R = 1$) Calculations done pictorially, not via indices

Chirality Flow Building Blocks

Introduction

Spinor-helicity recap

Chirality Flow

Massless QCD
Massless QCD

Automation

Conclusions

Key idea: su(2) = su(N) (hep-ph:2003.05877)

Draw & connect lines to directly obtain inner products $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_j}$ Removes need to do algebra or matrix multiplication

Define spinors as lines

$$\bar{u}_{i}^{-} = \bar{v}_{i}^{+} = \langle i | \alpha = \bigcirc \downarrow i , \quad u_{j}^{+} = v_{j}^{-} = |j\rangle_{\alpha} = \bigcirc \downarrow j \\
\bar{u}_{i}^{+} = \bar{v}_{i}^{-} = [i|_{\dot{\beta}} = \bigcirc \downarrow \downarrow \downarrow i , \quad u_{i}^{-} = v_{i}^{+} = |j|_{\dot{\beta}} = \bigcirc \downarrow \downarrow j$$

Spinor inner products follow

$$\langle i|^{\alpha}|j\rangle_{\alpha} \equiv \langle ij\rangle = -\langle ji\rangle = i$$

$$[i|_{\dot{\beta}}|j]^{\dot{\beta}} \equiv [ij] = -[ji] = i$$

$$[i]_{\dot{\beta}} = [ij] = -[ji] = i$$

Define slashed momentum as dot

The Massless QED Flow Rules: External Particles

oduction

Spinor-helicity recap

Chirality Fig

Massless QED

Massless QCD

Massive Particles

Aim and method Results

Conclusions

Species	Feynman	Flow
$\bar{u}^-(p_i)$	\longrightarrow i	i
$v^-(p_j)$	\longrightarrow $\frac{j}{}$	j
$v^+(p_j)$		j
$\bar{u}^+(p_i)$		i
$\epsilon^\mu(p_i,r)$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\epsilon_+^\mu(p_{\scriptscriptstyle \it i},r)$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Left-chiral ≡ dotted lines

right-chiral ≡ solid lines

The QED Flow Rules: Vertices and Propagators

Introduction

Spinor-helicity recap

Chirality Flow

Massless QED

Massless QCD

Automation

Aim and method

Results

Conclusions

Left-chiral ≡ dotted lines

right-chiral \equiv solid lines

Introduction

Spinor-helicity recap

Chirality Flov

Massless QED

Massive Particles

Automation

Aim and metho Results

Conclusions

$$\sim \langle p_{1}|\bar{\tau}^{\mu}\underbrace{(|p_{1}]\langle p_{1}| + |p_{4}]\langle p_{4}|)}_{p_{1}+p_{4}}\bar{\tau}^{\nu}|p_{2}]\underbrace{\frac{\langle r_{3}|\bar{\tau}_{\nu}|p_{3}]}{\langle r_{3}3\rangle}\underbrace{\frac{[r_{4}|\tau_{\mu}|p_{4})}{[4r_{4}]}}_{\frac{\epsilon_{4}^{+}}{4}}$$

$$= \frac{(\langle p_{1}|\bar{\tau}^{\mu}|p_{1}] + \langle p_{1}|\bar{\tau}^{\mu}|p_{4}])[r_{4}|\tau_{\mu}|p_{4}\rangle}{\langle r_{3}3\rangle[4r_{4}]}\underbrace{(\langle p_{1}|\bar{\tau}^{\nu}|p_{2}] + \langle p_{4}|\bar{\tau}^{\nu}|p_{2}])[p_{3}|\tau_{\nu}|r_{3}\rangle}_{\langle r_{3}3\rangle[4r_{4}]}$$

$$= \frac{\langle 1r_{4}\rangle([41]\langle 13\rangle + [44]\langle 43\rangle)[r_{3}2]}{\langle r_{3}3\rangle[4r_{4}]} = \frac{\langle 1r_{4}\rangle[41]\langle 13\rangle[r_{3}2]}{\langle r_{3}3\rangle[4r_{4}]}$$

Fierz identities like $\langle i|\bar{\tau}^{\mu}|j][k|\tau_{\mu}|l\rangle = \langle il\rangle[kj]$ Andrew Lifson Automating Chirality Flow [ii]=0

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flo

Massless QED

Massive Particles

Automatio

Aim and method Results

Conclusions

Chirality flow:

Introduction

Spinor-helicity recap

Chirality Flow

Massless QED

Massless QCD

Automatio

Aim and method

Results

Conclusions

Chirality flow:

A complicated QED Example

Spinor-helicity recap

Chirality Flor

Massless QED

Massive Particles

Automation

Aim and method Results

Conclusions

Spinor-helicity analytic:

- 5 charge conjugation/Fierz + rearranging
- Not possible to fit on single slide!

$$=\underbrace{(\sqrt{2}ei)^8}_{\text{vertices}}\underbrace{\frac{(-i)^3}{S_{1\,2}\ S_{3\,4}\ S_{7\,8\,9\,10}}}_{\text{photon propagators}}\underbrace{\frac{(i)^4}{S_{1\,2\,5}\ S_{3\,4\,6}\ S_{8\,9\,10}\ S_{9\,10}}}_{\text{fermion propagators}}$$

$$\underbrace{\frac{1}{[8r_8]\langle r_99\rangle}}_{\text{polarization vectors}} [1]$$

 $[15]\langle 64\rangle [10 9]$

$$(r_99)[9r_8] + (r_910)[10r_8]$$
 $\left(\underbrace{[33]\langle 37\rangle + [34]\langle 47\rangle + [36]\langle 67\rangle} \right)$

$$\times \left(-\langle 89 \rangle [91] \langle 12 \rangle - \langle 89 \rangle [95] \langle 52 \rangle - \langle 8\,10 \rangle [10\,\,1] \langle 12 \rangle - \langle 8\,10 \rangle [10\,\,5] \langle 52 \rangle \right)$$

The Non-abelian Massless QCD Flow Vertices

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED

Massless QCD

Massive Particles

Automation
Aim and method

Conclusions

Arrow directions only consistently set within full diagram

QCD Example: $q_1\bar{q}_1 \rightarrow q_2\bar{q}_2g$

Introduction

Colour flow reminder

Chirality Floy

Massless QED

Massless QCD

Massive Particles

Aim and method

Aim and metho Results

Conclusions

$$\begin{array}{c} q_{1}^{+} \\ \hline \\ q_{1}^{-} \\ \hline \\ q_{2}^{-} \\ \end{array} = \frac{ig_{s}^{3}}{2s_{q_{1}}\bar{q}_{1}} s_{q_{2}}\bar{q}_{2} \langle r1 \rangle \begin{bmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{array} + \underbrace{ \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix} \begin{pmatrix} q_{1} & \bar{q}_{1} \\ \bar{q}_{1} & \bar{q}_{2} \\ \end{pmatrix}$$

$$\begin{bmatrix} \cdots \end{bmatrix} \equiv \left\{ 2[q_1\bar{q}_2]\langle q_2\bar{q}_1\rangle ([1q_1]\langle q_1r\rangle + [1\bar{q}_1]\langle 1r\rangle) \\ -2[q_11]\langle 1\bar{q}_1\rangle \langle q_2r\rangle [1\bar{q}_2] + 2[q_11]\langle r\bar{q}_1\rangle \langle q_21\rangle [1q_2] \right\}$$

Massive Chirality Flow (hep-ph:2011.10075)

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flo

Massless QEI Massless QCI

Massive Particles

Automation

Aim and metho

Conclusions

Decompose massive momentum into massless ones

$$p^{\mu} = p^{\flat,\mu} + \alpha q^{\mu}$$
, $(p^{\flat})^2 = q^2 = 0$, $\alpha = \frac{p^2}{2p^{\flat}\cdot q}$

■ Spinors contain both chiralities, e.g.

$$\bar{\mathbf{v}}^-(\mathbf{p}) = \begin{array}{c} & \stackrel{p}{\longrightarrow} & p \\ & & - \end{array} = \left(\begin{array}{c} & & & \\ & & & \end{array} , \begin{array}{c} & & \\ & & & \\ & & & \end{array} \right)$$

- Add new polarisation vector $\oint_0 = \frac{1}{m\sqrt{2}}$
- Need matrix structure in fermion propagators and vertices, e.g.

$$p^{\mu}\gamma_{\mu}-m\sim \left(egin{matrix} m^{lpha} & \stackrel{\Sigma_{i}p_{i}}{\longrightarrow} & \stackrel{\Sigma_{i}}{\longrightarrow} & \\ & \stackrel{\Sigma_{i}p_{i}}{\longrightarrow} & m^{lpha} & \stackrel{eta}{\longrightarrow} & \end{array}
ight)$$

Massive Chirality Flow (hep-ph:2011.10075)

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flor

Massless QED Massless QCD

Massive Particles

Automation

Aim and method Results

Conclusions

Main conclusion

Matrix structure unavoidable with massive fermions Proceed as before to calculate without algebra

A Massive *Illuminating* Example

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flo

Massless QEI

Massive Particles

Automation

Aim and method

Conclusions

- Consider the same diagram of $f_1^+ \bar{f}_2^- \to \gamma_3^+ \gamma_4^-$ as before but include mass m_f
- Obtain 3 new terms
- Simplify with choices of q_1, q_2, r_3, r_4
- $\bullet e^{i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{\langle p_i^\flat q_i \rangle} \ , \quad e^{-i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{[q_i p_i^\flat]}$

$$=\frac{-2ie^{2}}{(s_{23}-m_{f}^{2})\langle r_{3}3\rangle[4r_{4}]}\left\{\begin{array}{c} p_{2}^{b}-\cdots-r_{3}^{r_{3}}\\ p_{4}-p_{1}^{b}-q_{1}\end{array}-\sqrt{\alpha_{1}\alpha_{2}}e^{i(\varphi_{2}-\varphi_{1})} \begin{array}{c} q_{2}-\cdots-r_{3}^{3}\\ p_{4}-p_{1}^{b}-q_{1}\\ q_{1}-\cdots-q_{4}^{r_{4}}\end{array}\right.$$

$$+ m_{f} \left(\sqrt{\alpha_{2}} e^{i\varphi_{2}} \right)^{q_{2}} - \sqrt{\alpha_{1}} e^{-i\varphi_{2}} \left(\sqrt{\alpha_{1}} e^{-i\varphi_{2}} \right)^{q_{2}} \left(\sqrt{\alpha_{1}} e^{-i\varphi_{2}} \right)^{q_{1}} + m_{f} \left(\sqrt{\alpha_{1}} e^{-i\varphi_{2}} \right)^{q_{2}} \left(\sqrt{\alpha_{1}} e^{-i\varphi_{2}} \right)^{q_{1}} + m_{f} \left(\sqrt{\alpha_{1}} e^{-i\varphi_{2}} \right)^{q_{2}} \left($$

MadGraph and the Automation of Chirality Flow

troduction

Colour flow remind

Chirality Flo

Massless QCD

Automatio

Aim and method Results

Conclusion

Summary

- So far: Numerical calculations use explicit multiplication rather than spin algebra analytically because quicker
- We have made the analytical spin algebra trivial
- Can we use this to make even faster numerics?

MadGraph and the Automation of Chirality Flow

ntroduction

Spinor-helicity recap Colour flow reminde

Massless QE Massless QC

Automation

Aim and method Results

Conclusion

Summary

- So far: Numerical calculations use explicit multiplication rather than spin algebra analytically because quicker
- We have made the analytical spin algebra trivial
- Can we use this to make even faster numerics?

Use MadGraph5_aMC@NLO (MG5aMC) for proof of concept automation

- Make minimal changes to massless QED in MG5aMC
- Pro: any difference in speed from our changes ⇒ sound conclusions
- Con: MG5aMC not designed for chirality flow ⇒ not optimal implementation

Sources of Expect Speed Gains

Spinor-helicity recap

Colour flow reminder

Massless QED

Massive Particles

Automation

Aim and method

Results

Conclusion

- We minimise matrix multiplication
- Each component of a calculation is simpler

Sources of Expect Speed Gains

Aim and method

- Simplified vertices and propagators
 - We minimise matrix multiplication
 - Each component of a calculation is simpler
- Gauge-based diagram removal
 - Polarisation vectors contain arbitrary gauge-reference spinor of momentum r
 - Spinor inner products antisymmetric $\Rightarrow \langle ii \rangle = [ij] = 0$
 - Chirality-flow makes optimal choice of r obvious \Rightarrow remove diagrams!

Our Main Result (hep-ph:2203.13618)

Colour flow reminder

Massless OCD

Automation Results

Conclusions and Outlook

Introduction

Spinor-helicity reca Colour flow remind

Chirality Flo

Massless QCD Massive Particle

Automatio

Aim and method Results

Conclusions

Conclusions:

- Chirality flow is the shortest route from Feynman diagram to complex number
- We have flow rules for full SM at tree level
- We automised it for massless QED, found significant gains in MadGraph

Outlook and other work in this area:

- Simon Plätzer and Malin Sjödahl used chirality flow as basis for resummation (hep-ph:2204.03258)
- Use method analytically to calculate loop amplitudes
 - Ongoing work by AL, Simon Plätzer, and Malin Sjödahl,
- Automate for rest of (tree-level) Standard Model and tweak algorithm to use all possible features of chirality flow
 - Two current master students working to achieve this

Reminder: Lorentz Group Representations

Backup Slides

Massless OCD

Massive Examples

Lorentz group elements: $e^{i(\theta_i J_i + \eta_i K_i)}$ $J_i \equiv \text{rotations}, \quad K_i \equiv \text{boosts}$

- Lorentz group generators \simeq 2 copies of su(2) generators
 - \blacksquare $so(3,1)_{\mathbb{C}} \cong su(2) \oplus su(2)$

Group algebra defined by commutator relations

$$\begin{split} [J_{i},J_{j}] &= i\epsilon_{ijk}J_{k}, \quad [J_{i},K_{j}] = i\epsilon_{ijk}K_{k}, \quad [K_{i},K_{j}] = -i\epsilon_{ijk}J_{k} \\ N_{i}^{\pm} &= \frac{1}{2}(J_{i}\pm iK_{i}) \;, \quad [N_{i}^{-},N_{j}^{+}] = 0 \;, \\ [N_{i}^{-},N_{j}^{-}] &= i\epsilon_{ijk}N_{k}^{-} \;, \qquad [N_{i}^{+},N_{j}^{+}] = i\epsilon_{ijk}N_{k}^{+} \end{split}$$

- Representations
 - (0,0) scalar particles
 - $(\frac{1}{2},0)$ left-chiral and $(0,\frac{1}{2})$ right-chiral Weyl (2-component) spinors.
 - $(\frac{1}{2},0) \oplus (0,\frac{1}{2})$, Dirac (4-component) spinors.
 - $(\frac{1}{2}, \frac{1}{2})$ vectors, e.g. gauge bosons

Spinor-Helicity: Gauge Bosons in Terms of Spinors

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow

Lorentz Group Detai

Chinar hal dataile

Chirality-Flo Motivation

Lorentz algebra $so(3,1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality \sim helicity

Outgoing polarisation vectors:

$$\epsilon_{+}^{\mu}(p,r) = \frac{\langle r|\bar{\tau}^{\mu}|p]}{\langle rp \rangle}, \qquad \epsilon_{-}^{\mu}(p,r) = \frac{[r|\tau^{\mu}|p\rangle}{[pr]}$$

- \blacksquare *r* is a (massless) arbitrary reference momentum ($p \cdot r \neq 0$)
- Different r choices correspond to different gauges

$$\epsilon_+^\mu(p,r') - \epsilon_+^\mu(p,r) = -p^\mu rac{\langle r'r
angle}{\langle r'p
angle \langle rp
angle}$$

- Gauge invariant quantities must be *r*-invariant
 - Choose r as conveniently as possible (remember $\langle ij \rangle = -\langle ji \rangle$ s.t. $\langle ii \rangle = 0$) (4-gluon amplitude: can make 20/21 terms vanish)
 - Variance under $r \rightarrow r'$ good check of gauge invariance of (partial) amplitude

Spinor-Helicity: Vectors and Removing μ Indices

Backup Slide:

Massless OCD

Spinor Helicity Reminder Colour flow reminder

Massive Chirality Flor

Lorentz Group Detai

Spinor-hel detail

Chirality-Flow

Lorentz algebra $so(3,1) \cong su(2) \oplus su(2)$ Consider massless particles: chirality \sim helicity

Dirac matrices in chiral basis

$$\gamma^{\mu} = egin{pmatrix} 0 & \sqrt{2} au^{\mu} \ \sqrt{2}ar{ au}^{\mu} & 0 \end{pmatrix} \qquad \sqrt{2} au^{\mu} = (\mathsf{1},ec{\sigma}), \ \ \sqrt{2}ar{ au}^{\mu} = (\mathsf{1},-ec{\sigma}),$$

Remove $\tau/\bar{\tau}$ matrices in amplitude with

$$\underbrace{\langle i|\bar{\tau}^{\mu}|j][k|\tau_{\mu}|I\rangle = \langle iI\rangle[kj]}_{\text{Fierz identity}}, \qquad \underbrace{\langle i|\bar{\tau}^{\mu}|j] = [j|\tau^{\mu}|i\rangle}_{\text{Charge Conjugation}}$$

Express (massless) p^{μ} in terms of spinors

$$ho^{\mu} = rac{[oldsymbol{p}| au^{\mu}|oldsymbol{p}
angle}{\sqrt{2}} = rac{\langleoldsymbol{p}|ar{ au}^{\mu}|oldsymbol{p}|}{\sqrt{2}} \;, \quad \sqrt{2}oldsymbol{p}^{\mu} au_{\mu} \equiv oldsymbol{p} = |oldsymbol{p}]\langleoldsymbol{p}| \;, \quad \sqrt{2}oldsymbol{p}^{\mu}ar{ au}_{\mu} \equiv ar{oldsymbol{p}} = |oldsymbol{p}
angle [oldsymbol{p}]$$

Andrew Lifson Automating Chirality Flow 23rd September 2022 3/17

Spinor-Helicity: Gauge Bosons in Terms of Spinors

Spinor Helicity Reminder Colour flow reminder

Massless OCD

Massive Examples

UNIVERSITY

Lorentz algebra $so(3,1) \cong su(2) \oplus su(2)$

Consider massless particles: chirality ~ helicity

Outgoing polarisation vectors ($r \equiv$ gauge choice, $r^2 = 0$, $r \cdot p \neq 0$):

$$\epsilon_{+}^{\mu}(p,r) = \frac{\langle r|\bar{ au}^{\mu}|p\rangle}{\langle rp
angle}, \qquad \qquad \epsilon_{-}^{\mu}(p,r) = \frac{[r| au^{\mu}|p\rangle}{[pr]} \\ p \cdot \epsilon_{+}(p,r) = \underbrace{\frac{\langle r|p^{\mu}\bar{ au}_{\mu}|p\rangle}{\langle rp
angle}}_{ ext{Weyl eq. }p^{\mu}\bar{ au}_{\mu}|p\rangle=0} \qquad \qquad p \cdot \epsilon_{-}^{\mu}(p,r) = \underbrace{\frac{[r| au^{\mu}|p\rangle}{[pr]}}_{ ext{Weyl eq. }p^{\mu}\bar{ au}_{\mu}|p\rangle=0}$$

$$\epsilon_{+}(p,r)\cdot(\epsilon_{-})^{*}(p,r)=\underbrace{rac{\langle r|ar{ au}^{\mu}|p]}{\langle rp
angle}}_{\epsilon_{\pm}=(\epsilon_{\mp})^{*}} \underbrace{rac{\langle rp
angle[rp]}{\langle rp
angle[pr]}}_{[pr]} =\underbrace{rac{\langle rp
angle[rp]}{\langle rp
angle[pr]}}_{[pr]=-[rp]}$$

Colour Flow: a Quick Introduction

Standard method in SU(N)-colour calculations:

Write all objects in terms of $\delta_{i\bar{i}} \equiv$ flows of colour (for simplicity $T_R = 1$) Calculations done pictorially, not via indices

Massless OCD

Spinor Helicity Reminder Colour flow reminder

Massive Examples

Colour Flow: a Quick Introduction

Standard method in SU(N)-colour calculations:

Calculations done pictorially, not via indices $\sum_i \delta_{ii} = \mathcal{N} = 0$

Backup Slides

Spinor Helicity Reminder
Colour flow reminder
Massless OCD

Massive Chirality Flow

Lorentz Group Detail

Spinor-hel detail

Chirality-Flow

The Non-abelian Massless QCD Flow Vertices

Backup Slide

Spinor Helicity Reminder Colour flow reminder Massless OCD

Massive Chirality Flow
Massive Examples

Lorentz Group Detail

Spinor-hel detail

Chirality-Flo Motivation

Arrow directions only consistently set within full diagram Double line $\equiv g_{\mu\nu}$, momentum dot $\equiv p_{\mu}$

QCD Example: $q_1\bar{q}_1 \rightarrow q_2\bar{q}_2g$

Backup Slides

Spinor Helicity Reminder Colour flow reminder

Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Detail:

Spinor-hel detail

Chirality-Flow

$$\begin{bmatrix} \cdots \end{bmatrix} \equiv \left\{ 2[q_1\bar{q}_2]\langle q_2\bar{q}_1\rangle ([1q_1]\langle q_1r\rangle + [1\bar{q}_1]\langle 1r\rangle) \\ -2[q_11]\langle 1\bar{q}_1\rangle \langle q_2r\rangle [1\bar{q}_2] + 2[q_11]\langle r\bar{q}_1\rangle \langle q_21\rangle [1q_2] \right\}$$

Incoming Massive Spinors in Chirality Flow

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow

Massive Examples

Lorentz Group Deta

Spinor-hel detail

Chirality-Flow Motivation

$p^{\mu} = p^{\flat,\mu} + \alpha q^{\mu} ,$	$(p^{\flat})^2=q^2=0\;,$	$e^{i\varphi}\sqrt{\alpha}=\frac{m}{\langle p^{\flat}q\rangle}$,	$e^{-i\varphi}\sqrt{\alpha}=rac{m}{[qp^{\flat}]}$
Spin operator $-\frac{\Sigma^{\mu}}{2}$	$rac{s_{\mu}}{2}=rac{\gamma^{5}s^{\mu}\gamma_{\mu}}{2}, s^{\mu}$	$=rac{1}{m}(oldsymbol{ ho}^{lat,\mu}-lphaoldsymbol{q}^{\mu})$	

Andrew Lifson Automating Chirality Flow

Some Fermion Flow Rules

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow

Massive Examples

Lorentz Group Detail

Spinor-hel detai

Chirality-Flo Motivation

Fermion-vector vertex

$$= ie(P_L C_L + P_R C_R) \gamma^{\mu} = ie\sqrt{2} \begin{pmatrix} 0 & C_R \\ C_L & 0 \end{pmatrix}$$

Fermion propagator

$$\frac{i}{p^2 - m_f^2} \begin{pmatrix} m_f \delta_{\ \dot{\beta}}^{\dot{\alpha}} & \sqrt{2} p^{\dot{\alpha}\beta} \\ \sqrt{2} \bar{p}_{\alpha\dot{\beta}} & m_f \delta_{\alpha}^{\ \beta} \end{pmatrix} = \frac{i}{p^2 - m_f^2} \begin{pmatrix} m_f \dot{\alpha}_{\cdots} & \dot{\beta}_{\cdots} & \ddots & \ddots \\ p_i & \ddots & \ddots & \ddots & \ddots \\ p_i & \cdots & \cdots & m_f & \cdots & \beta \end{pmatrix}$$

Left and right chiral couplings may differ

A Massive *Illuminating* Example

Massless OCD

Massive Examples

Chirality-Flow

Consider the same diagram of $f_1^+ \bar{f}_2^- \to \gamma_3^+ \gamma_4^-$ as before but include mass m_f

- Obtain 3 new terms
- Simplify with choices of q_1, q_2, r_3, r_4
- $\mathbf{e}^{i\varphi_i}\sqrt{\alpha_i}=\frac{m_i}{\langle \mathbf{p}_i^b \mathbf{q}_i \rangle}$, $\mathbf{e}^{-i\varphi_i}\sqrt{\alpha_i}=\frac{m_i}{[\mathbf{q}_i \mathbf{p}_i^b]}$

$$=\frac{-2ie^{2}}{(s_{23}-m_{f}^{2})\langle r_{3}3\rangle[4r_{4}]}\left\{\begin{array}{c} p_{2}^{b} & & \\ p_{2}^{b} & & \\ p_{1}^{b} & & \\ p_{1}^{b} & & \\ \end{array}\right.$$

$$=\frac{-2ie^{2}}{(s_{23}-m_{f}^{2})\langle r_{3}3\rangle[4r_{4}]}\left\{\begin{array}{c} p_{2}^{b} & & \\ p_{2}^{b} & & \\ p_{1}^{b} & & \\ \end{array}\right.$$

$$+m_{f}\left(\sqrt{\alpha_{2}}e^{i\varphi_{2}}\right)\left(\begin{array}{c} q_{2} & & \\ p_{1}^{b} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ p_{1}^{b} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ p_{1}^{b} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ p_{2}^{b} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ q_{1} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ q_{1} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ q_{1} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ q_{1} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ q_{1} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ \end{array}\right)\left(\begin{array}{c} q_{1} & & \\ \end{array}\right)\left(\begin{array}{c} q_{2} & & \\ \end{array}\right)\left(\begin{array}{c} q_{1} & & \\ \end{array}\right)\left(\begin{array}{c}$$

A Second Massive Example: $f_1\bar{f}_2 \rightarrow W \rightarrow f_3\bar{f}_4h_5$

Backup Slide

Spinor Helicity Reminder
Colour flow reminder
Massless QCD

Massive Chirality Flow

Massive Examples

Lorentz Group Detail

Spinor-hel details

Chirality-Flo Motivation

UNIVERSITY

- W bosons simplifies ($C_R = 0$)
- Simplify with choices of $q_1, \dots q_5$
- Scalar has no flow line

Step 1: Draw fermion lines:
$$\sim C_{L,12} \sqrt{\alpha_2} e^{i \varphi_2}$$

A Second Massive Example: $f_1\bar{f}_2 \rightarrow W \rightarrow f_3\bar{f}_4h_5$

Backup Slide

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow

Lorentz Group Details

Spinor hal datails

Chirality-Flo Motivation

- W bosons simplifies ($C_R = 0$)
- Simplify with choices of $q_1, \dots q_5$
- $\bullet e^{i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{\langle p_i^\flat q_i \rangle} \ , \quad e^{-i\varphi_i}\sqrt{\alpha_i} = \frac{m_i}{[q_i p_j^\flat]}$
- Scalar has no flow line

Step 2: Flip arrows and connect: $C_{L,12}C_{L,34}\sqrt{\alpha_2\alpha_3}e^{i(\varphi_2+\varphi_3)}$

Lorentz Group Representations

Massless OCD

Massive Examples

Lorentz Group Details

Lorentz group elements: $e^{i(\theta_i J_i + \eta_i K_i)}$ $J_i \equiv \text{rotations}, \quad K_i \equiv \text{boosts}$

- Lorentz group generators \simeq 2 copies of su(2) generators
 - $so(3,1)_{\mathbb{C}} \cong su(2) \oplus su(2)$

Group algebra defined by commutator relations

$$[J_i,J_j]=i\epsilon_{ijk}J_k,\quad [J_i,K_j]=i\epsilon_{ijk}K_k,\quad [K_i,K_j]=-i\epsilon_{ijk}J_k$$

$$N_i^{\pm}=\frac{1}{2}(J_i\pm iK_i)\;,\quad [N_i^-,N_j^+]=0\;,$$

$$[N_i^-,N_j^-]=i\epsilon_{ijk}N_k^-\;,\qquad [N_i^+,N_j^+]=i\epsilon_{ijk}N_k^+$$
 Representations (i.e. realisations of N_i^{\pm})

- - (0,0) scalar particles
 - $(\frac{1}{2}, 0)$ left-chiral and $(0, \frac{1}{2})$ right-chiral Weyl (2-component) spinors.
 - $(\frac{1}{2},0) \oplus (0,\frac{1}{2})$, Dirac (4-component) spinors.
 - $\left(\frac{1}{2},\frac{1}{2}\right)$ vectors, e.g. gauge bosons

How to Calculate? Spinor-Helicity

Backup Slide

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flov

Massive Examples

Lorentz Group Detail

Spinor-hel details

Chirality-Flow Motivation

Give each particle a defined helicity ⇒ amplitude now a number!

■ Amplitude written in terms of Lorentz-invariant spinor inner products

$$\langle ij \rangle = -\langle ji \rangle \equiv \langle i||j \rangle$$
 and $[ij] = -[ji] \equiv [i||j]$

- These are well known complex numbers, $\langle ij \rangle \sim [ij] \sim \sqrt{2p_i \cdot p_i}$
- Remove $\tau/\bar{\tau}$ matrices in amplitude with

$$\langle i|\bar{\tau}^{\mu}|j][k|\tau_{\mu}|I\rangle = \langle iI\rangle[kj], \qquad \langle i|\bar{\tau}^{\mu}|j] = [j|\tau^{\mu}|i\rangle$$

How to Calculate a Process

Spinor Helicity Reminder Massless OCD

Massive Examples

Chirality-Flow Motivation

Sum all Feynman diagrams, square, and integrate

Often spin structure is non-trivial

Each diagram is a complex number, easy to square

Can use algebra to simplify first, or brute force matrix multiplication

Define Problem

Massive Examples

Chirality-Flow Motivation

UNIVERSITY

Kinematic part of amplitude slowed by spin and vector structures

- Can we still improve on this?
 - Deriving spinor inner products $\langle ij \rangle$, [kl] requires at least 2 steps
 - Re-write every object as spinors
 - Use Fierz identity $\bar{\tau}^{\mu}_{\alpha\dot{\beta}} \tau^{\dot{\alpha}\beta}_{\mu} = \delta^{\beta}_{\alpha} \delta^{\dot{\alpha}}_{\dot{\beta}}$
 - Not intuitive which inner products we obtain
- In SU(N) use graphical reps for calculations
 - E.a. using the colour-flow method
 - (Also birdtracks etc.)
- Spinor-helicity $\equiv su(2) \oplus su(2)$
 - Can we use graphical reps?

Creating Chirality Flow: Building Blocks

Backup Slide

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow
Massive Examples

Lorentz Group Detail

Chinar hal dataile

Chirality-Flow Motivation

A flow is a directed line from one object to another su(2) objects have dotted indices and su(2) objects undotted indices

First step: Ansatz for spinor inner products (only possible Lorentz invariant)

$$\langle i|^{\alpha}|j\rangle_{\alpha} \equiv \langle ij\rangle = -\langle ji\rangle = i \longrightarrow j$$

 $[i|_{\dot{\beta}}|j]^{\dot{\beta}} \equiv [ij] = -[ji] = i \longrightarrow j$

Spinors and Kronecker deltas follow

