

UNIVERSITY

Speeding up SM Amplitude Calculations with Chirality Flow

MCNET MEETING 202223 SEPTEMBER 2022 - ANDREW LIFSON

BASED ON HEP-PH:2003.05877 (EPJC), HEP-PH:2011.10075 (EPJC), AND HEP-PH:2203.13618 (EPJC)
IN COLLABORATION WITH JOAKIM ALNEFJORD, CHRISTIAN REUSCHLE, MALIN SJÖDAHL, AND ZENNY WETTERSTEN

1 Introduction

- Spinor-helicity recap

■ Colour flow reminder
2 Chirality Flow

- Massless QED
- Massless QCD
- Massive Particles

3 Automation
■ Aim and method

- Results

4 Conclusions

Our Main Analytical Result

Introduction

 Spinor-helicity recap Colour flow reminder
Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation Aim and method Results

Conclusions

10-particle Feynman Diagram calculated in single slide

$$
=\underbrace{(\sqrt{2} e i)^{8}}_{\text {vertices }} \underbrace{\frac{(-i)^{3}}{s_{12} S_{34} S_{78910}}}_{\text {photon propagators }} \underbrace{\frac{(i)^{4}}{s_{125} S_{346} S_{8910} S_{910}}}_{\text {fermion propagators }} \underbrace{\frac{1}{\left[8 r_{8}\right]\left\langle r_{9} 9\right\rangle}}_{\text {polarization vectors }} \quad[15]\langle 64\rangle[109]
$$

$$
\times\left(\left\langle r_{9} 9\right\rangle\left[9 r_{8}\right]+\left\langle r_{9} 10\right\rangle\left[10 r_{8}\right]\right)(\underbrace{[33]}_{0}\langle 37\rangle+[34]\langle 47\rangle+[36]\langle 67\rangle)
$$

$$
\times\left(-\langle 89\rangle[91]\langle 12\rangle-\langle 89\rangle[95]\langle 52\rangle-\langle 810\rangle\left[\begin{array}{ll}
10 & 1
\end{array}\right]\langle 12\rangle-\langle 810\rangle[105]\langle 52\rangle\right)
$$

Our Main Numerical Result (so far) (hep-ph:2203.13618)

Introduction Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation Aim and method Results
Conclusions

Evaluation time for 100000 matrix elements for $e^{+} e^{-}$to n photons

Spinor-Helicity: its Building Blocks

Introduction Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

LUND
UNIVERSITY

Lorentz algebra so $(3,1) \cong s u(2) \oplus s u(2)$
 Consider massless particles: chirality \sim helicity

Spinors (use chiral basis):

$$
\begin{array}{ll}
u^{+}(p)=v^{-}(p)=\binom{0}{|p\rangle} & u^{-}(p)=v^{+}(p)=\binom{\mid p]}{0} \\
\bar{u}^{+}(p)=\bar{v}^{-}(p)=\left(\begin{array}{ll}
{[p \mid} & 0
\end{array}\right) & \bar{u}^{-}(p)=\bar{v}^{+}(p)=\left(\begin{array}{ll}
0 & \langle p|
\end{array}\right)
\end{array}
$$

■ Amplitude written in terms of Lorentz-invariant spinor inner products

$$
\langle i j\rangle=-\langle j i\rangle \equiv\langle i \| j\rangle \text { and }[i j]=-[j i] \equiv[i \| j]
$$

- These are well known complex numbers, $\langle i j\rangle \sim[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$

Spinor-Helicity: Vectors and Removing μ Indices

Lorentz algebra $s o(3,1) \cong s u(2) \oplus s u(2)$

Dirac matrices in chiral basis

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sqrt{2} \tau^{\mu} \\
\sqrt{2} \bar{\tau}^{\mu} & 0
\end{array}\right) \quad \sqrt{2} \tau^{\mu}=(1, \vec{\sigma}), \quad \sqrt{2} \bar{\tau}^{\mu}=(1,-\vec{\sigma})
$$

Remove vector indices with e.g.

$$
\underbrace{\left.\langle i| \bar{\tau}^{\mu} \mid j\right]\left[k\left|\tau_{\mu}\right| I\right\rangle=\langle i l\rangle[k j]}_{\text {Fierz identity }}, \quad \underbrace{\left.\sqrt{2} p^{\mu} \tau_{\mu} \equiv \not p=\mid p\right]\langle p|}_{\text {Contraction with Pauli }}
$$

Polarisation vectors $\left(r \equiv\right.$ gauge choice, $\left.r^{2}=0, r \cdot p \neq 0\right)$:

$$
\not_{+}(p, r)=\frac{\mid p]\langle r|}{\langle r p\rangle}, \quad \quad \oint_{-}(p, r)=\frac{\mid r]\langle p|}{[p r]}
$$

An Illuminating Example: $\boldsymbol{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \gamma$

Introduction Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED
Masstess OCD
Massive Particles
Automation
Aim and method
Results
Conclusions

■ $|p\rangle \equiv$ right-chiral spinor
■ $\mid p] \equiv$ left-chiral spinor
■ $\tau^{\mu}, \bar{\tau}^{\mu} \equiv$ Pauli matrices

- $\langle i j\rangle \sim[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$

Spinor helicity: analytic

$$
\begin{aligned}
& \sim\left\langle p_{1}\right| \bar{\tau}^{\mu} \underbrace{\left.\left.\left(\mid p_{1}\right]\left\langle p_{1}\right|+\mid p_{4}\right]\left\langle p_{4}\right|\right)}_{p_{1}+p_{4}} \bar{\tau}^{\nu} \mid p_{2}] \underbrace{\frac{\left.\left\langle r_{3}\right| \bar{\tau}_{\nu} \mid p_{3}\right]}{\left\langle r_{3} 3\right\rangle}}_{\epsilon_{3}^{-}} \underbrace{\frac{\left[r_{4}\left|\tau_{\mu}\right| p_{4}\right\rangle}{\left[4 r_{4}\right]}}_{\epsilon_{4}^{+}} \\
& =\frac{\left.\left.\left(\left\langle p_{1}\right| \bar{\tau}^{\mu} \mid p_{1}\right]+\left\langle p_{1}\right| \bar{\tau}^{\mu} \mid p_{4}\right]\right)\left[r_{4}\left|\tau_{\mu}\right| p_{4}\right\rangle}{\left.\left.\left\langle r_{3} 3\right\rangle\left[\left\langle p_{1}\right| \bar{\tau}^{\nu} \mid p_{2}\right]+\left\langle p_{4}\right| \bar{\tau}^{\nu} \mid p_{2}\right]\right)\left[p_{3}\left|\tau_{\nu}\right| r_{3}\right\rangle} \\
& =\underbrace{\frac{\left\langle 1 r_{4}\right\rangle([41]\langle 13\rangle+[44]\langle 43\rangle)\left[r_{3} 2\right]}{\left\langle r_{3} 3\right\rangle\left[4 r_{4}\right]}}_{\text {Fierz identities like } \left.\langle i| \bar{\tau}^{\mu} \mid j\right]\left[k\left|\tau_{\mu}\right|| \rangle=\langle i i\rangle\langle k]\right.}=\underbrace{\frac{\left\langle 1 r_{4}\right\rangle[41]\langle 13\rangle\left[r_{3} 2\right]}{\left\langle r_{3} 3\right\rangle\left[4 r_{4}\right]}}_{[i i]=0}
\end{aligned}
$$

An Illuminating Example: $\boldsymbol{e}^{+} e^{-} \rightarrow \gamma \gamma$

Introduction

 Spinor-helicity recap Colour flow reminder
Chirality Flow

Massless QED Massless QCD Massive Particles

Automation Aim and method Results
Conclusions

- $|p\rangle \equiv$ right-chiral spinor
- $\mid p] \equiv$ left-chiral spinor
- $\tau^{\mu}, \bar{\tau}^{\mu} \equiv$ Pauli matrices
$\square\langle i j\rangle \sim[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$

Spinor helicity: explicit matrix multiplication

$$
\sim\left[\bar{u}^{-}\left(p_{1}\right) \gamma^{\mu} \epsilon_{\mu}^{+}\left(p_{4}\right)\left(p_{1}^{\nu}+p_{4}^{\nu}\right) \gamma_{\nu} \gamma^{\rho} \epsilon_{\rho}^{-}\left(p_{3}\right) v^{+}\left(p_{2}\right)\right]
$$

- Also cache and recycle various components

■ Most common numerical method

An Illuminating Example: $\boldsymbol{e}^{+} e^{-} \rightarrow \gamma \gamma$

- $|p\rangle \equiv$ right-chiral spinor

■ $\mid p] \equiv$ left-chiral spinor

- $\tau^{\mu}, \bar{\tau}^{\mu} \equiv$ Pauli matrices
$\square\langle i j\rangle \sim[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$

Spinor helicity: explicit matrix multiplication

$$
\sim\left[\bar{u}^{-}\left(p_{1}\right) \gamma^{\mu} \epsilon_{\mu}^{+}\left(p_{4}\right)\left(p_{1}^{\nu}+p_{4}^{\nu}\right) \gamma_{\nu} \gamma^{\rho} \epsilon_{\rho}^{-}\left(p_{3}\right) v^{+}\left(p_{2}\right)\right]
$$

■ Also cache and recycle various components
■ Most common numerical method

Can we systematically remove need for algebra or matrix multiplication?

Colour Flow: a Quick Introduction

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flow
Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

Standard method in $S U(N)$-colour calculations:

Write all objects in terms of $\delta_{i \bar{\jmath}} \equiv$ flows of colour (for simplicity $\mathrm{T}_{\mathrm{R}}=1$) Calculations done pictorially, not via indices

Chirality Flow Building Blocks

Introduction
Spinor-helicity recap Colour flow reminder

Chirality Flow
Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

Key idea: $\mathrm{su}(2)=\mathrm{su}(\mathrm{N})$ (hep-ph:2003.05877)

Draw \& connect lines to directly obtain inner products $\langle i j\rangle \sim[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$ Removes need to do algebra or matrix multiplication

- Define spinors as lines

$$
\begin{array}{ll}
\bar{u}_{i}^{-}=\bar{v}_{i}^{+}=\left\langle\left. i\right|^{\alpha}=\bigcirc \longleftarrow i\right. & u_{j}^{+}=v_{j}^{-}=|j\rangle_{\alpha}=\bigcirc \longrightarrow{ }^{j} \\
\bar{u}_{i}^{+}=\bar{v}_{i}^{-}=\left[\left.i\right|_{\dot{\beta}}=\bigcirc \cdots \cdots i\right.
\end{array}
$$

- Spinor inner products follow

$$
\begin{aligned}
\left\langle\left. i\right|^{\alpha} \mid j\right\rangle_{\alpha} & \equiv\langle i j\rangle=-\langle j i\rangle=i \longrightarrow{ }^{j} \\
{\left[\left.i\right|_{\dot{\beta}} \mid j\right]^{\dot{\beta}} } & \left.\equiv[i j]=-[j i]=i \ldots \ldots \ldots{ }^{j}\right]
\end{aligned}
$$

■ Define slashed momentum as dot

$$
\not p \equiv \sqrt{2} p^{\mu} \tau_{\mu}^{\dot{\alpha} \beta}=\underset{\longrightarrow}{p}, \quad \bar{\phi} \equiv \sqrt{2} p_{\mu} \bar{\tau}_{\alpha \dot{\beta}}^{\mu}=\longrightarrow \quad p
$$

The Massless QED Flow Rules: External Particles

Introduction
Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

LUND

Species	Feynman	Flow
$\bar{u}^{-}\left(p_{i}\right)$		$\bigcirc \longleftarrow i$
$v^{-}\left(p_{j}\right)$		$\longrightarrow \quad j$
$v^{+}\left(p_{j}\right)$		$\bigcirc \ldots \ldots j$
$\bar{u}^{+}\left(p_{i}\right)$	$\longrightarrow \quad \stackrel{i}{+}$	$\bigcirc------i$
$\epsilon_{-}^{\mu}\left(p_{i}, r\right)$	ommoiri	$\frac{1}{[i r]} \bigcirc \xrightarrow{[i r]} \bigcirc---------\quad \begin{aligned} & r \\ & i \end{aligned}$
$\epsilon_{+}^{\mu}\left(p_{i}, r\right)$	Onnmi	$\frac{1}{\langle r i\rangle} \bigcirc \cdots-\cdots-\cdots \quad \begin{aligned} & i \\ & r \end{aligned} \text { or } \frac{1}{\langle r i\rangle} \bigcirc-\cdots----\frac{i}{r}$

$$
\text { Left-chiral } \equiv \text { dotted lines } \quad \text { right-chiral } \equiv \text { solid lines }
$$

The QED Flow Rules: Vertices and Propagators

Introduction
Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

LUND
UNIVERSITY

Left-chiral \equiv dotted lines
right-chiral \equiv solid lines

An Illuminating Example: $e^{+} e^{-} \rightarrow \gamma \gamma$

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

UNIVERSITY

$$
\begin{aligned}
& \text { Spinor helicity: } \\
& \sim\left\langle p_{1}\right| \bar{\tau}^{\mu} \underbrace{\left.\left.\left(\mid p_{1}\right]\left\langle p_{1}\right|+\mid p_{4}\right]\left\langle p_{4}\right|\right)}_{p_{1}+p_{4}} \bar{\tau}^{\nu} \mid p_{2}] \underbrace{\frac{\left.\left\langle r_{3}\right| \bar{\tau}_{\nu} \mid p_{3}\right]}{\left\langle r_{3} 3\right\rangle}}_{\epsilon_{3}^{-}} \underbrace{\frac{\left[r_{4}\left|\tau_{\mu}\right| p_{4}\right\rangle}{\left[4 r_{4}\right]}}_{\epsilon_{4}^{+}} \\
& =\frac{\left.\left.\left.\left.\left(\left\langle p_{1}\right| \bar{\tau}^{\mu} \mid p_{1}\right]+\left\langle p_{1}\right| \bar{\tau}^{\mu} \mid p_{4}\right]\right)\left[r_{4}\left|\tau_{\mu}\right| p_{4}\right\rangle\left(\left\langle p_{1}\right| \bar{\tau}^{\nu} \mid p_{2}\right]+\left\langle p_{4}\right| \bar{\tau}^{\nu} \mid p_{2}\right]\right)\left[p_{3}\left|\tau_{\nu}\right| r_{3}\right\rangle}{\left\langle r_{3} 3\right\rangle\left[4 r_{4}\right]} \\
& =\underbrace{\frac{\left\langle 1 r_{4}\right\rangle([41]\langle 13\rangle+[44]\langle 43\rangle)\left[r_{3} 2\right]}{\left\langle r_{3} 3\right\rangle\left[4 r_{4}\right]}}_{\text {Fierz identities like } \left.\langle i| \bar{\tau}_{\mu} \mid j\right]\left[k\left|\tau_{\mu}\right|| \rangle=\langle i\rangle\right\rangle[k j]}=\underbrace{\frac{\left\langle 1 r_{4}\right\rangle[41]\langle 13\rangle\left[r_{3} 2\right]}{\left\langle r_{3} 3\right\rangle\left[4 r_{4}\right]}}_{[i i]=0}
\end{aligned}
$$

An Illuminating Example: $\boldsymbol{e}^{+} e^{-} \rightarrow \gamma \gamma$

Introduction

Spinor-helicity recap
Colour flow reminder

Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation Aim and method Results

Conclusions

UNIVERSITY

Chirality flow:

An Illuminating Example: $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \gamma \gamma$

Introduction

Spinor-helicity recap
Colour flow reminder

Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

Chirality flow:

A complicated QED Example

Introduction Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

LUND
UNIVERSITY

The Non-abelian Massless QCD Flow Vertices

Introduction

Spinor-helicity recap
Colour flow reminder

Chirality Flow
Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

Arrow directions only consistently set within full diagram

QCD Example: $q_{1} \bar{q}_{1} \rightarrow q_{2} \bar{q}_{2} g$

Introduction

Spinor-helicity recap
chirality Flow
Massless QED

Massless QCD

Massive Particles
Automation
Aim and method
Results
Conclusions

$$
\begin{aligned}
{[\cdots] } & \equiv\left\{2\left[q_{1} \bar{q}_{2}\right]\left\langle q_{2} \bar{q}_{1}\right\rangle\left(\left[1 q_{1}\right]\left\langle q_{1} r\right\rangle+\left[1 \bar{q}_{1}\right]\langle 1 r\rangle\right)\right. \\
& \left.-2\left[q_{1} 1\right]\left\langle 1 \bar{q}_{1}\right\rangle\left\langle q_{2} r\right\rangle\left[1 \bar{q}_{2}\right]+2\left[q_{1} 1\right]\left\langle r \bar{q}_{1}\right\rangle\left\langle q_{2} 1\right\rangle\left[1 q_{2}\right]\right\}
\end{aligned}
$$

Massive Chirality Flow (hep-ph:2011.10075)

Introduction
Spinor-helicity recap Colour flow reminder

Chirality Flow
Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

LUND
UNIVERSITY

Decompose massive momentum into massless ones

$$
p^{\mu}=p^{b, \mu}+\alpha q^{\mu}, \quad\left(p^{b}\right)^{2}=q^{2}=0, \quad \alpha=\frac{p^{2}}{2 p^{b} \cdot q}
$$

■ Spinors contain both chiralities, e.g.

- Add new polarisation vector $\phi_{0}=\frac{1}{m \sqrt{2}} \bigcirc \cdots$

■ Need matrix structure in fermion propagators and vertices, e.g.

Massive Chirality Flow (hep-ph:2011.10075)

Introduction

Spinor-helicity recap Colour flow reminder

Main conclusion

Matrix structure unavoidable with massive fermions Proceed as before to calculate without algebra

A Massive Illuminating Example

Introduction
Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

LUND
UNIVERSITY

Consider the same diagram of $f_{1}^{+} \bar{f}_{2}^{-} \rightarrow \gamma_{3}^{+} \gamma_{4}^{-}$as before but include mass m_{f}

- Obtain 3 new terms
- Simplify with choices of $q_{1}, q_{2}, r_{3}, r_{4}$
- $e^{i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left\langle p_{i}^{p} i_{i}\right\rangle}, \quad e^{-i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left[q_{i} p_{i}^{b}\right]}$

MadGraph and the Automation of Chirality Flow

Summary

■ So far: Numerical calculations use explicit multiplication rather than spin algebra analytically because quicker

- We have made the analytical spin algebra trivial

■ Can we use this to make even faster numerics?

MadGraph and the Automation of Chirality Flow

Introduction
Spinor-helicity recap
Colour flow reminder
Chirality Flow
Massless QED
Massless QCD
Massive Particles
Automation Aim and method Results
Conclusions

Summary

■ So far: Numerical calculations use explicit multiplication rather than spin algebra analytically because quicker

- We have made the analytical spin algebra trivial

■ Can we use this to make even faster numerics?

Use MadGraph5_aMC@NLO (MG5aMC) for proof of concept automation

■ Make minimal changes to massless QED in MG5aMC

- Pro: any difference in speed from our changes \Rightarrow sound conclusions
- Con: MG5aMC not designed for chirality flow \Rightarrow not optimal implementation

Sources of Expect Speed Gains

1 Simplified vertices and propagators

Introduction

Spinor-helicity recap
Colour flow reminder
Chirality Flow
Massless QED Massless QCD Massive Particles

Automation Aim and method Results

Conclusions

UNIVERSITY

- We minimise matrix multiplication

■ Each component of a calculation is simpler

Sources of Expect Speed Gains

Introduction
Spinor-helicity recap Colour flow reminder

Chirality Flow
Massless QED
Massless QCD
Massive Particles
Automation
Aim and method
Results
Conclusions

UNIVERSITY

1 Simplified vertices and propagators

- We minimise matrix multiplication
- Each component of a calculation is simpler

2 Gauge-based diagram removal

- Polarisation vectors contain arbitrary gauge-reference spinor of momentum r
- Spinor inner products antisymmetric $\Rightarrow\langle i i\rangle=[j j]=0$

■ Chirality-flow makes optimal choice of r obvious \Rightarrow remove diagrams!

Our Main Result (hep-ph:2203.13618)

Introduction

Spinor-helicity recap Colour flow reminder

Chirality Flow

Massless QED
Massless QCD
Massive Particles
Automation Aim and method Results

Conclusions

Evaluation time for 100000 matrix elements for $e^{+} e^{-}$to n photons

Conclusions and Outlook

Conclusions:

- Chirality flow is the shortest route from Feynman diagram to complex number

■ We have flow rules for full SM at tree level
■ We automised it for massless QED, found significant gains in MadGraph

Outlook and other work in this area:

■ Simon Plätzer and Malin Sjödahl used chirality flow as basis for resummation (hep-ph:2204.03258)
■ Use method analytically to calculate loop amplitudes
■ Ongoing work by AL, Simon Plätzer, and Malin Sjödahl,
■ Automate for rest of (tree-level) Standard Model and tweak algorithm to use all possible features of chirality flow
■ Two current master students working to achieve this

Reminder: Lorentz Group Representations

Backup Slides
Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow
Motivation

Lorentz group elements: $e^{i\left(\theta_{i} J_{i}+\eta_{i} K_{i}\right)} \quad J_{i} \equiv$ rotations,$\quad K_{i} \equiv$ boosts
■ Lorentz group generators $\simeq 2$ copies of $\operatorname{su}(2)$ generators

- $s o(3,1)_{\mathbb{C}} \cong s u(2) \oplus s u(2)$

Group algebra defined by commutator relations

$$
\begin{gathered}
{\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}, \quad\left[J_{i}, K_{j}\right]=i \epsilon_{i j k} K_{k}, \quad\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k} J_{k}} \\
N_{i}^{ \pm}=\frac{1}{2}\left(J_{i} \pm i K_{i}\right), \quad\left[N_{i}^{-}, N_{j}^{+}\right]=0, \\
{\left[N_{i}^{-}, N_{j}^{-}\right]=i \epsilon_{i j k} N_{k}^{-}, \quad\left[N_{i}^{+}, N_{j}^{+}\right]=i \epsilon_{i j k} N_{k}^{+}}
\end{gathered}
$$

■ Representations

- $(0,0)$ scalar particles
- ($\frac{1}{2}, 0$) left-chiral and ($0, \frac{1}{2}$) right-chiral Weyl (2-component) spinors.
- $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$, Dirac (4-component) spinors.
- ($\frac{1}{2}, \frac{1}{2}$) vectors, e.g. gauge bosons

Spinor-Helicity: Gauge Bosons in Terms of Spinors

Lorentz algebra so $(3,1) \cong s u(2) \oplus s u(2)$
 Consider massless particles: chirality \sim helicity

Outgoing polarisation vectors:

$$
\epsilon_{+}^{\mu}(p, r)=\frac{\left.\langle r| \bar{\tau}^{\mu} \mid p\right]}{\langle r p\rangle}, \quad \epsilon_{-}^{\mu}(p, r)=\frac{\left[r\left|\tau^{\mu}\right| p\right\rangle}{[p r]}
$$

■ r is a (massless) arbitrary reference momentum ($p \cdot r \neq 0$)

- Different r choices correspond to different gauges

$$
\epsilon_{+}^{\mu}\left(p, r^{\prime}\right)-\epsilon_{+}^{\mu}(p, r)=-p^{\mu} \frac{\left\langle r^{\prime} r\right\rangle}{\left\langle r^{\prime} p\right\rangle\langle r p\rangle}
$$

- Gauge invariant quantities must be r-invariant

■ Choose r as conveniently as possible (remember $\langle i j\rangle=-\langle j i\rangle$ s.t. $\langle i i\rangle=0$) (4-gluon amplitude: can make 20/21 terms vanish)

- Variance under $r \rightarrow r^{\prime}$ good check of gauge invariance of (partial) amplitude

Spinor-Helicity: Vectors and Removing μ Indices

$$
\begin{aligned}
& \text { Lorentz algebra } s o(3,1) \cong s u(2) \oplus s u(2) \\
& \text { Consider massless particles: chirality } \sim \text { helicity }
\end{aligned}
$$

Dirac matrices in chiral basis

$$
\gamma^{\mu}=\left(\begin{array}{cc}
0 & \sqrt{2} \tau^{\mu} \\
\sqrt{2} \bar{\tau}^{\mu} & 0
\end{array}\right) \quad \sqrt{2} \tau^{\mu}=(1, \vec{\sigma}), \quad \sqrt{2} \bar{\tau}^{\mu}=(1,-\vec{\sigma})
$$

Remove $\tau / \bar{\tau}$ matrices in amplitude with

$$
\underbrace{\left.\langle i| \bar{\tau}^{\mu} \mid j\right]\left[k\left|\tau_{\mu}\right| I\right\rangle=\langle i l\rangle[k j]}_{\text {Fierz identity }}, \quad \underbrace{\left.\langle i| \bar{\tau}^{\mu} \mid j\right]=\left[j\left|\tau^{\mu}\right| i\right\rangle}_{\text {Charge Conjugation }}
$$

Express (massless) p^{μ} in terms of spinors
$\left.p^{\mu}=\frac{\left[p\left|\tau^{\mu}\right| p\right\rangle}{\sqrt{2}}=\frac{\left.\langle p| \bar{\tau}^{\mu} \mid p\right]}{\sqrt{2}}, \quad \sqrt{2} p^{\mu} \tau_{\mu} \equiv \not p=\mid p\right]\langle p|, \quad \sqrt{2} p^{\mu} \bar{\tau}_{\mu} \equiv \bar{\phi}=|p\rangle[p \mid$

Spinor-Helicity: Gauge Bosons in Terms of Spinors

Lorentz algebra so $(3,1) \cong s u(2) \oplus s u(2)$
Consider massless particles: chirality \sim helicity
Outgoing polarisation vectors $\left(r \equiv\right.$ gauge choice, $\left.r^{2}=0, r \cdot p \neq 0\right)$:

$$
\begin{array}{rlrl}
\epsilon_{+}^{\mu}(p, r) & =\frac{\left.\langle r| \bar{\tau}^{\mu} \mid p\right]}{\langle r p\rangle}, & \epsilon_{-}^{\mu}(p, r) & =\frac{\left[r\left|\tau^{\mu}\right| p\right\rangle}{[p r]} \\
p \cdot \epsilon_{+}(p, r)= & \underbrace{\frac{\left.\langle r| p^{\mu} \bar{\tau}_{\mu} \mid p\right]}{\langle r p\rangle}=0}_{\text {Weyl eq. } \left.p^{\mu} \bar{\tau}_{\mu} \mid p\right]=0} & p \cdot \epsilon_{-}^{\mu}(p, r)=\underbrace{\frac{\left[r\left|p^{\mu} \tau_{\mu}\right| p\right\rangle}{[p r]}=0}_{\text {Weyl eq. } p^{\mu} \tau_{\mu}|p\rangle=0}
\end{array}
$$

$$
\epsilon_{+}(p, r) \cdot\left(\epsilon_{-}\right)^{*}(p, r)=\underbrace{\frac{\left.\langle r| \bar{\tau}^{\mu} \mid p\right]}{\langle r p\rangle} \frac{\left[r\left|\tau_{\mu}\right| p\right\rangle}{[p r]}}_{\epsilon_{ \pm}=\left(\epsilon_{\mp}\right)^{*}}=\frac{\langle r p\rangle[r p]}{\langle r p\rangle[p r]}=\underbrace{-1}_{[p r]=-[r p]}
$$

Colour Flow: a Quick Introduction

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

LUND
UNIVERSITY

Standard method in $S U(N)$-colour calculations:

Write all objects in terms of $\delta_{i \bar{j}} \equiv$ flows of colour (for simplicity $\mathrm{T}_{\mathrm{R}}=1$)
Calculations done pictorially, not via indices

$$
\delta_{i \bar{\jmath}}=\bar{\jmath} \longrightarrow{ }^{-}, \quad \sum_{i}^{a}=\delta_{i j}=N=
$$

Colour Flow: a Quick Introduction

Standard method in SU(N)-colour calculations:

Backup Slides
Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

LUND
UNIVERSITY

Calculations done pictorially, not via indices $\sum_{i} \delta_{i i}=N=$

The Non-abelian Massless QCD Flow Vertices

Backup Slides Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow
Motivation

LUND
UNIVERSITY

Flow

Arrow directions only consistently set within full diagram
Double line $\equiv g_{\mu \nu}$, momentum dot $\equiv p_{\mu}$

QCD Example: $q_{1} \bar{q}_{1} \rightarrow q_{2} \bar{q}_{2} g$

Backup Slides

 Spinor Helicity Reminder Colour flow reminder Massless QCDMassive Chirality Flow Massive Examples

Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

$$
[\cdots] \equiv\left\{2\left[q_{1} \bar{q}_{2}\right]\left\langle q_{2} \bar{q}_{1}\right\rangle\left(\left[1 q_{1}\right]\left\langle q_{1} r\right\rangle+\left[1 \bar{q}_{1}\right]\langle 1 r\rangle\right)\right.
$$

$$
\left.-2\left[q_{1} 1\right]\left\langle 1 \bar{q}_{1}\right\rangle\left\langle q_{2} r\right\rangle\left[1 \bar{q}_{2}\right]+2\left[q_{1} 1\right]\left\langle r \bar{q}_{1}\right\rangle\left\langle q_{2} 1\right\rangle\left[1 q_{2}\right]\right\}
$$

Incoming Massive Spinors in Chirality Flow

Backup Slides
Spinor Helicity Reminder
Colour flow reminder
Massless QCD
Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow
Motivation

LUND
UNIVERSITY
$p^{\mu}=p^{b, \mu}+\alpha q^{\mu}, \quad\left(p^{b}\right)^{2}=q^{2}=0, \quad e^{i \varphi} \sqrt{\alpha}=\frac{m}{\left\langle p^{b} q\right\rangle}$

$$
e^{-i \varphi} \sqrt{\alpha}=\frac{m}{\left[q p^{b}\right]}
$$

$$
\text { Spin operator }-\frac{\Sigma^{\mu} s_{\mu}}{2}=\frac{\gamma^{5} s^{\mu} \gamma_{\mu}}{2}, \quad s^{\mu}=\frac{1}{m}\left(p^{b, \mu}-\alpha q^{\mu}\right)
$$

Spinor	Feynman	Flow
$\bar{v}^{-}(p)$		$\left(\bigcirc--<-\cdots p^{b}, \sqrt{\alpha} e^{i \varphi} \bigcirc \prec\right)$
$\bar{v}^{+}(p)$		$\left(-\sqrt{\alpha} e^{-i \varphi} \bigcirc---<----q \quad, \bigcirc \longleftarrow p^{b}\right)$
$u^{-}(p)$		$\binom{\bigcirc \cdots \cdots-p^{b}}{\sqrt{\alpha} e^{i \varphi} \bigcirc \longrightarrow q}$
$u^{+}(p)$		
Andrew Lifson		$\begin{array}{lll}\text { mating Chirality Flow } & \text { 23rd September } 2022 & 9 / 17\end{array}$

Some Fermion Flow Rules

Backup Slides
Spinor Hellicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

$$
p^{\mu}=p^{b, \mu}+\alpha q^{\mu}, \quad\left(p^{b}\right)^{2}=q^{2}=0, \quad \alpha=\frac{p^{2}}{2 p \cdot q} \neq 0
$$

Fermion-vector vertex

Fermion propagator

$$
\frac{i}{p^{2}-m_{f}^{2}}\left(\begin{array}{cc}
m_{f} \delta^{\dot{\alpha}} & \sqrt{2} p^{\dot{\alpha} \beta} \\
\sqrt{2} \bar{p}_{\alpha \dot{\beta}} & m_{f} \delta_{\alpha}{ }^{\beta}
\end{array}\right)=\frac{i}{p^{2}-m_{f}^{2}}\left(\begin{array}{cc}
m_{f}^{\dot{\alpha}} \ldots \ldots{ }^{\dot{\beta}} & \cdots \\
\rightarrow \Sigma_{i} p_{i} & m_{f} \xrightarrow{\alpha}
\end{array}\right)
$$

Left and right chiral couplings may differ

A Massive Illuminating Example

Backup Slides

Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

Consider the same diagram of $f_{1}^{+} \bar{f}_{2}^{-} \rightarrow \gamma_{3}^{+} \gamma_{4}^{-}$as before but include mass m_{f}

- Obtain 3 new terms
- Simplify with choices of $q_{1}, q_{2}, r_{3}, r_{4}$
- $e^{i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left\langle p_{i}^{i} i_{i}\right\rangle}, \quad e^{-i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left[q_{i} p_{i}^{i}\right]}$

A Second Massive Example: $f_{1} \bar{f}_{2} \rightarrow W \rightarrow f_{3} \bar{f}_{4} h_{5}$

Backup Slides
Spinor Hellicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

LUND
UNIVERSITY

- W bosons simplifies ($C_{R}=0$)

■ Simplify with choices of $q_{1}, \cdots q_{5}$
$\square e^{i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left\langle p_{i}^{p} q_{i}\right\rangle}, \quad e^{-i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left[q_{i} p_{i}^{p}\right]}$

- Scalar has no flow line

A Second Massive Example: $f_{1} \bar{f}_{2} \rightarrow W \rightarrow f_{3} \bar{f}_{4} h_{5}$

Backup Slides

Spinor Helicity Reminder

Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples

Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

LUND
UNIVERSITY

- W bosons simplifies ($C_{R}=0$)
- Simplify with choices of $q_{1}, \cdots q_{5}$
$\square e^{i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left\langle p_{i} q_{i}\right\rangle}, \quad e^{-i \varphi_{i}} \sqrt{\alpha_{i}}=\frac{m_{i}}{\left[q_{i} p_{i}^{p}\right]}$
■ Scalar has no flow line

Step 2: Flip arrows and connect: $C_{L, 12} C_{L, 34} \sqrt{\alpha_{2} \alpha_{3}} e^{i\left(\varphi_{2}+\varphi_{3}\right)}$

Lorentz Group Representations

Backup Slides
Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow
Motivation

LUND
UNIVERSITY

Lorentz group elements: $e^{i\left(\theta_{i} J_{i}+\eta_{i} K_{i}\right)} \quad J_{i} \equiv$ rotations,$\quad K_{i} \equiv$ boosts
■ Lorentz group generators $\simeq 2$ copies of $\operatorname{su}(2)$ generators

- $s o(3,1)_{\mathbb{C}} \cong s u(2) \oplus s u(2)$

Group algebra defined by commutator relations

$$
\begin{gathered}
{\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k}, \quad\left[J_{i}, K_{j}\right]=i \epsilon_{i j k} K_{k}, \quad\left[K_{i}, K_{j}\right]=-i \epsilon_{i j k} J_{k}} \\
N_{i}^{ \pm}=\frac{1}{2}\left(J_{i} \pm i K_{i}\right), \quad\left[N_{i}^{-}, N_{j}^{+}\right]=0, \\
{\left[N_{i}^{-}, N_{j}^{-}\right]=i \epsilon_{i j k} N_{k}^{-}, \quad\left[N_{i}^{+}, N_{j}^{+}\right]=i \epsilon_{i j k} N_{k}^{+}}
\end{gathered}
$$

\square Representations (i.e. realisations of $N_{i}^{ \pm}$)

- $(0,0)$ scalar particles

■ ($\frac{1}{2}, 0$) left-chiral and ($0, \frac{1}{2}$) right-chiral Weyl (2-component) spinors.

- $\left(\frac{1}{2}, 0\right) \oplus\left(0, \frac{1}{2}\right)$, Dirac (4-component) spinors.
- ($\frac{1}{2}, \frac{1}{2}$) vectors, e.g. gauge bosons

How to Calculate? Spinor-Helicity

Backup Slides
Spinor Helicity Reminder
Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details

Give each particle a defined helicity \Rightarrow amplitude now a number!
Spinors (in chiral basis):

$$
\begin{aligned}
& u^{+}(p)=v^{-}(p)=\binom{0}{|p\rangle} \\
& u^{-}(p)=v^{+}(p)=\binom{\mid p]}{0} \\
& \bar{u}^{+}(p)=\bar{v}^{-}(p)=\left(\left[\begin{array}{ll}
{[p \mid} & 0
\end{array}\right) \quad \bar{u}^{-}(p)=\bar{v}^{+}(p)=\left(\begin{array}{ll}
0 & \langle p|
\end{array}\right)\right. \\
& \gamma^{\mu}=\left(\begin{array}{cc}
0 & \sqrt{2} \tau^{\mu} \\
\sqrt{2} \bar{\tau}^{\mu} & 0
\end{array}\right) \\
& \sqrt{2} \tau^{\mu}=(1, \vec{\sigma}), \quad \sqrt{2} \bar{\tau}^{\mu}=(1,-\vec{\sigma}),
\end{aligned}
$$

- Amplitude written in terms of Lorentz-invariant spinor inner products

$$
\langle i j\rangle=-\langle j i\rangle \equiv\langle i \| j\rangle \text { and }[i j]=-[j i] \equiv[i \| j]
$$

■ These are well known complex numbers, $\langle i j\rangle \sim[i j] \sim \sqrt{2 p_{i} \cdot p_{j}}$
■ Remove $\tau / \bar{\tau}$ matrices in amplitude with

$$
\left.\left.\langle i| \bar{\tau}^{\mu} \mid j\right]\left[k\left|\tau_{\mu}\right| I\right\rangle=\langle i \mid\rangle[k j], \quad\langle i| \bar{\tau}^{\mu} \mid j\right]=\left[j\left|\tau^{\mu}\right| i\right\rangle
$$

How to Calculate a Process

Backup Slides Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

LUND
UNIVERSITY

Sum all Feynman diagrams, square, and integrate

Often spin structure is non-trivial

$$
\sim \underbrace{\left[\bar{u}\left(p_{1}\right) \gamma^{\mu}\left(p_{1}^{\nu}+p_{4}^{\nu}\right) \gamma_{\nu} \gamma^{\rho} v\left(p_{2}\right)\right] \epsilon_{\rho}\left(p_{3}\right) \epsilon_{\mu}\left(p_{4}\right)}
$$

A mathematical expression we have simplify and square

Most common method: use helicity basis

Each diagram is a complex number, easy to square
Can use algebra to simplify first, or brute force matrix multiplication

Define Problem

LUND

Kinematic part of amplitude slowed by spin and vector structures

■ Can we still improve on this?
■ Deriving spinor inner products $\langle i j\rangle,[k l]$ requires at least 2 steps

- Re-write every object as spinors

■ Use Fierz identity $\bar{\tau}_{\alpha \dot{\beta}}^{\mu} \tau_{\mu}^{\dot{\alpha} \beta}=\delta_{\alpha}^{\beta} \delta_{\dot{\beta}}^{\dot{\alpha}}$
■ Not intuitive which inner products we obtain

- In $\operatorname{SU}(\mathrm{N})$ use graphical reps for calculations

■ E.g. using the colour-flow method

- (Also birdtracks etc.)
- Spinor-helicity $\equiv s u(2) \oplus s u(2)$
- Can we use graphical reps?

Creating Chirality Flow: Building Blocks

Backup Slides
Spinor Helicity Reminder Colour flow reminder Massless QCD

Massive Chirality Flow Massive Examples
Lorentz Group Details
Spinor-hel details
Chirality-Flow Motivation

LUND
UNIVERSITY

A flow is a directed line from one object to another su(2) objects have dotted indices and su(2) objects undotted indices

■ First step: Ansatz for spinor inner products (only possible Lorentz invariant)

$$
\begin{aligned}
\left\langle\left. i\right|^{\alpha} \mid j\right\rangle_{\alpha} & \equiv\langle i j\rangle=-\langle j i\rangle=i \longrightarrow \\
{\left[\left.i\right|_{\dot{\beta}} \mid j\right]^{\dot{\beta}} } & \left.\equiv[i j]=-[j i]=i_{\ldots}\right]
\end{aligned}
$$

- Spinors and Kronecker deltas follow

$$
\begin{aligned}
\left\langle\left. i\right|^{\alpha}\right. & =\bigcirc \ldots{ }^{i}, & |j\rangle_{\alpha} & =\bigcirc \longrightarrow{ }^{j} \\
{\left[\left.i\right|_{\dot{\beta}}\right.} & =\bigcirc \ldots \ldots]^{j}, & \mid j]^{\dot{\beta}} & =\bigcirc \cdots \cdots{ }^{j} \\
\delta_{\alpha}^{\beta} \equiv \mathbb{1}_{\alpha}^{\beta} & =\xrightarrow{\alpha}, & \delta_{\dot{\alpha}}^{\dot{\beta}} \equiv \mathbb{1}_{\dot{\alpha}}^{\dot{\beta}} & =\cdots \ldots \ldots{ }^{\dot{\beta}}
\end{aligned}
$$

